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In this paper, we discuss the crucial but little-known fact that, as Kolmogorov himself
claimed, the mathematical theory of probabilities cannot be applied to factual
probabilistic situations. This is because it is nowhere specified how, for any given
particular random phenomenon, we should construct, effectively and without circularity,
the specific and stable distribution law that gives the individual numerical probabilities
for the set of possible outcomes. Furthermore, we do not even know what significance we
should attach to the simple assertion that such a distribution law ‘exists’. We call this
problem Kolmogorov’s aporia†.
We provide a solution to this aporia in this paper. To do this, we first propose a general
interpretation of the concept of probability on the basis of an example, and then develop
it into a non-circular and effective general algorithm of semantic integration for the
factual probability law involved in a specific factual probabilistic situation. The
development of the algorithm starts from the fact that the concept of probability, unlike
a statistic, does not apply to naturally pre-existing situations but is a conceptual artefact
that ensures, locally in space and time, a predictability that is more stable and definite
than that permitted by primary statistical data.
The algorithm, which is constructed within a method of relativised conceptualisation,
leads to a probability distribution expressed in rational numbers and involving a sort of
quantification of the factual concept of probability. Furthermore, it also provides a
definite meaning to the simple assertion that a factual probability law exists. We also
show that the semantic integration algorithm is compatible with the weak law of large
numbers.
The results we give provide a complete solution to Kolmogorov’s aporia. They also define
a concept of probability that is explicitly organised into a semantic, epistemological and
syntactic whole. In a broader context, our results can be regarded as a strong, pragmatic
and operational specification of Karl Popper’s propensity interpretation of probabilities.

† Note added in proof: After completion of the current paper, I read Christopher Porter’s contribution
to this special issue, in which he called this the problem of applicability, which is more specific and
descriptive, and thus a better name.
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1. Introduction

The factual concept of probability is intuitive and certainly very ancient: for example,
Aristotle used it as a qualification of the extension of a belief. It is a feature of common
thought and speech, where, after a long and varied evolution, it now works mainly with
reference to statistical features.

However, it was only relatively late in the history of thought that any mathematical
expressions related to probability emerged. For example, in 1654, Blaise Pascal defined
a ‘triangle’ describing the outcomes of games of chance. The concept itself evolved
slowly: Jacob Bernoulli was the first to give a definition through a ‘law of large numbers’
(published posthumously in 1713). Bernoulli’s law was specifically tied, more or less
explicitly, to games of chance, and it was not until 1812 that Laplace made use of it in
connection with the much larger class of factual situations where ‘statistical’ distributions
are stable with respect to repetition of the experimental circumstances. In this way, a quite
general distinction between ‘pure’ statistics and probabilities crept into scientific thought.

In 1931, more than 200 years after Bernoulli’s statement of the law of large numbers,
Richard von Mises stressed the connection between the observable and measurable rel-
ative frequency of the outcomes of a given event and the probability assigned to that
event in any situation that involves ‘probabilities’. In this way, a general factual concept
of frequential probability became thoroughly embedded in scientific thinking, from where
it migrated more generally into everyday thought.

At the same time, a ‘probabilistic syntax’ was being developed within the emerging
mathematical theory of abstract measures due to Borel, Lebesgue, Paul Lévy, Markov,
and many others. Working along these lines, and shortly after von Mises’ work, An-
dreï N. Kolmogorov published in 1933 the first fully worked out mathematical proba-
bilistic syntax (Kolmogorov 1933). In this way, a general abstract concept of probability
became established within scientific thinking.

The interpretive connection between Kolmogorov’s syntactic concept of probability
and the factual concept of frequential probability characterised by von Mises was then
improved through reformulations of the weak law of large numbers in the form of var-
ious ‘theorems’ establishing ‘strong’ laws, with contributions from Borel, Kolmogorov,
Kintchine and others. As a result, it was believed for some time that von Mises’ con-
cept of frequential probability could provide a satisfactory semantic interpretation of
Kolmogorov’s mathematical concept of a probability measure.

So it seemed for a time that the concept of probability had finally achieved an ex-
plicitly constructed structure that was satisfactory from all three main points of view:
factual/semantic, syntactic and interpretive.

Meanwhile, between 1872 and 1877, Ludwig Boltzmann introduced the concept of
statistical entropy into physics through the equation

S = k
∑
j

(n(ej)/N)

(
log

1

(n(ej)/N)

)
,

where k is a constant tied to energy, and the ratios (n(ej)/N) are the relative frequencies
of a set of physical ‘events’ {ej}, j = 1, 2, . . . q. In this way, he was able to root Rudolf
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Clausius’ phenomenological second law of thermodynamics within atomic physics, where
it characterises the degree of dispersion of certain statistical distributions and their rate
of change.

Much later, Shannon (Shannon 1948) published his theory of information communi-
cation, which was later refined in Khinchin (1957). Shannon introduced the notion of
an ‘alphabet’ of signs ai, i = 1, 2, . . . n, emitted by a ‘source of information’ for encoding
and transmitting messages, which are optimised according to certain pragmatic crite-
ria. He then just posited a set of stable numerical values for the individual probabilities
p(ai), i = 1, 2, . . . n, for each of the signs in this alphabet, and assumed that they obey
the general conditions imposed by Kolmogorov on probability measures. Furthermore,
Shannon defined, as a central concept of his theory of information communication, an
entropic form

H(S) = k′
∑
i

pi log(1/pi)

called the informational or probabilistic entropy of the source of the signs {ai}, i =

1, 2, . . . n. This expression mimics the form of Boltzmann’s physical/statistical entropy,
but the constant k′ is not the same as Boltzmann’s constant, and instead of the rela-
tive frequencies (n(ej)/N), j = 1, 2, . . . q, he inserted the ‘probabilities’ {pi}, i = 1, 2, . . . q

(which is reasonable because the set of numbers considered by Shannon is, by hypothesis
or construction, endowed with rigorous stability, provided the experimental conditions
remain unchanged).

For a time it seemed that Shannon’s concept of informational entropy enabled the
construction of entropic measures of ‘complexity’, thus leading to a mathematical theory
of complexity founded on the concept of probability†.

Surprisingly, thirty years after he had constructed what was, and still is, considered
almost unanimously to be a successful probabilistic syntax associated with a well-formed
factual concept of probability, Kolmogorov grew dissatisfied with the factual interpreta-
tion provided by the weak laws of large numbers for a probability measure in his formal
sense. Therefore, he claimed that his mathematical representation of probabilities was
not, as he had previously believed, an abstract reformulation of a well-constructed factual
concept of probability, but merely an interesting mathematical construct.

He also asserted that, because of this, his probabilistic syntax could not be used as
a basis for Shannon’s theory of communication. Nor, a fortiori, could it be used as
a concept of informational entropy for estimating the complexities of factual entities.
As a result, he initiated another approach for measuring complexities in the form of
the well-known theory of the ‘algorithmic complexity’ of sequences of signs, which Per
Martin Löf, Chaitin and other authors have continued to develop. However, the semantic
content of the sequence of signs under consideration is entirely lost in this algorithmic
representation of complexity.

It should be mentioned at this point that recent approaches to systems and organisation

† Unfortunately, this has led to a remarkable degree of confusion, though I believe it does contain within
it the germ of an idea that may be developed rigorously and productively – see Mugur Schächter (2006,
pages 261–311).
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have placed increasing emphasis on the structures of what signs signify, though these
approaches have so far stubbornly remained purely qualitative.

So, in the background, and almost unnoticed, the crucial concepts of factual proba-
bility, information and complexity have been undergoing a crisis. Their basic definitions
appear to be flawed by vagueness and obscurities, which hinder a clear understanding
of the intimate interrelationships that are felt to underlie these concepts, given their
common grounding in statistical features.

Karl Popper’s well-known propensity interpretation of probabilities (Popper 1967) has
thrown a pale beam of light onto this fuzzy conceptual ground. However, despite having
an enduring effect, it has not changed the fact that the factual concept of probability,
which is so central in everyday thought, as well as in physics and numerous other sci-
entific domains, has simply not yet been fully worked out. When considered globally,
the concept of probability does not seem to have achieved the status of a clearly formu-
lated epistemological/operational/syntactic structure, in the same way as happened, for
instance, for the concept of ‘a geometry’ through the progressive integration of the Kan-
tian conception of space as an a priori form of human intuition, the geometries of Euclid,
Lobatchewsky and Riemann, and Henri Poincaré’s analyses of the human psycho-kinetic
physical actions that build the factual structure of what is called ‘physical’ space, which
can be described syntactically using the particular geometry of Euclid alone.

However, it seems clear that epistemological factors do indeed act strongly when the
concept of probability is used in practice, and that this determines the syntactic features
of the concept. For example, the concept of ‘local information’ in Shannon’s theory
of information communication is basic, and is tied to what are definitely subjective
considerations. The concept of informational entropy also measures aspects that are at
the same time both subjective and objective.

The unresolved state of the concept of probability we have described constitutes a
major lacuna in current scientific thinking, though it seems to be largely unrecognised.
In the rest of this paper we will provide a thorough analysis of this fundamental prob-
lem and then propose a solution. To do this, we will bring together the main seman-
tic/operational/epistemological features that explicitly or implicitly make use of the con-
cept of probability in some way within the natural sciences, and organise these features
into a coherent whole. In this way we hope to provide a complete factual concept of
probability that is fully satisfactory as an interpretation of the mathematical probabilistic
syntax. This is all we aim to achieve in the current paper, and we leave open the pos-
sibility that the creation of an improved concept of factual probability might reveal the
need for some new developments of the corresponding mathematical probabilistic syntax
and optimal ways to connect it with its factual interpretation.

Organisation of the paper

We shall begin in Section 2 by giving a thorough analysis and definition of the problem
raised by the factual concept of probability as it now stands.

Section 3 provides an overview of the method of relativised conceptualisation (MRC),
which we will use later in the paper to solve the problem. Space limitations mean that
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we will only be able to list the main features of the general method that we will need
for the rest of the paper, though references are given for where full details can be found.
However, as an introduction to the general method, and to provide motivation for it,
we begin Section 3 with a brief sketch of a special case of the method in the form of
infra-quantum mechanics (Mugur Schächter 1991; 1992a; 1992b; 1993; 2011).

In Section 4, we analyse a series of simple games based on a jigsaw puzzle to provide
familiarity with the use of MRC, but also to show how we might be able to use it to
construct, in any given empirical probabilistic situation, a general effective procedure
for identifying a relativised factual probability law for that situation. The jigsaw puzzle
metaphor plays an important role in the rest of the paper.

We begin Section 5 by clarifying how the concepts of a random phenomenon and
a probabilistic situation are viewed within MRC, and discuss the relationship between
factual probabilistic data and Kolmogorov’s syntax. Then, using the analysis developed
in Section 4 as a guide, we use MRC to build an effective algorithm that, within its
domain of application, constructs the factual probability law tied to any given random
phenomenon, and which thus provides a solution to Kolmogorov’s aporia.

In Section 6, we consider how the algorithm developed in Section 5 is related to the
weak law of large numbers, and show that they are mutually consistent. We then show
how they can be combined to give a unified expression that has a similar structure to
the weak law of large numbers but is also meaningful and semantically rich.

We present our general conclusions on Kolmogorov’s aporia in classical probability
theory in Section 7. Then, as a postscript, in Section 8, we raise a rather surprising
and basic question about the possibility, or impossibility, of constructing the concept of
probability within fundamental quantum mechanics.

2. The problem: Kolmogorov’s aporia

2.1. Kolmogorov’s classical definition of a probability space

The fundamental concept in Kolmogorov’s formulation of the mathematical theory of
probabilities is a ‘probability space’ [U, τ, p(τ)] where:

— U = {ei}, where i ∈ I with I some index set, is a universe of elementary events (a
set) generated by the repetition of an ‘identically’ reproducible procedure Π (often
called an ‘experiment’), which, in general, produces elementary events ei that vary
from one realisation of Π to the next, despite the fact that all the realisations are
assumed to be identical.

— τ is an algebra† of events built on U , where an event, which we will denote by e, is a
subset of U , and is defined to have occurred each time an elementary event ei from e

has occurred.

† An algebra built on a set S is a set of subsets of S, which includes both the set S itself and the empty
set ∅ such that if it contains the subsets A and B, it also contains A ∪B and A−B.
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— p(τ) is a probability measure defined on the algebra of events τ (and not on the
universe U of elementary events ei)†.

Given a particular factual probabilistic situation, the numerical value of the individual
probability p(A) of an event A in the algebra of events τ considered for that particular
factual situation is not specified by the formal concept of a probability measure p(τ).
Only the general relations set out in the footnote below are defined by this formal concept.

A pair (Π, U) containing an identically reproducible procedure Π and the corresponding
universe of elementary events U is called a random phenomenon.

We can define various algebras of events τ on a given universe U , and can thus create
different associations of the form

{[random phenomenon], [corresponding probability space]},

all stemming from the same pair (Π, U).
In earlier representations of the factual concept of probability (in particular, those due

to Bernoulli and von Mises), only the general conditions to be imposed on the structure
of a factual ‘probability law’ were sketched out in mathematical terms. By contrast,
Kolmogorov’s formal concept of a probability space [U, τ, p(τ)] gave a formal structure (cf.
the footnotes on the previous and current pages) to all the relevant features (elementary
events, events and probability measure), and was also located quite definitely within the
well-developed and even more general mathematical syntax of the theory of measures.
This represented a huge advance.

However, Kolmogorov’s formalisation presupposed that the weak law of large numbers
offered a satisfactory factual definition of the individual numerical probabilities of the
events involved in any given empirical probabilistic situation, and thus also of their
distribution. But this assumption fell apart progressively, until, finally, it became obvious
that there was a gaping void in the interpretation.

† If we did define a probability measure on U , it would consist of a set of real numbers p(A), each
associated with an event A in U and such that:

0 ≤p(A) ≤ 1

p(U) = 1 (norm)

p(∅) = 0

p(A ∪B) ≤ p(A) + p(B)

where the equality in the final line only holds if A and B are mutually ‘independent’ in the sense
of probabilities, that is, if they have no elementary event ei in common, that is, A ∩ B = ∅. In
the ‘frequency interpretation’ of the concept of probability, the number p(A) is defined as the value
of the mathematical limit, which is assumed to exist, towards which any relative frequency n(A)/N
converges when the number of realisations N of the repeatable procedure Π is increased to infinity,
n(A) being the number of outcomes of A when Π is repeated N times. This definition is supposed
to constitute the factual definition of the individual probabilities p(e) to be assigned to the isolated
events e in the algebra τ . But, as we stress in this paper, this ‘factual’ definition is deficient: in
particular, this is because the concept of a mathematical limit used here mixes a semantic feature
with a non-effective syntactic one.
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2.2. On the factual interpretation of an abstract probability measure

The problem we have described lying at the heart of the concept of probability is still
little appreciated, in part perhaps because it remains rather vague. For most physicists,
communication specialists and mathematicians who use probability theory but do not
have it as the main focus of their research, not to mention the man in the street, the
distinctions between a syntax and its interpretation seem ill-defined, and do not appear to
have any practical importance for them. Moreover, non-experts still confidently assume
that all important questions concerning the concept of probability must have long since
been answered in the specialist literature. Of course, this is a common situation in science,
and even necessary if science is to progress without constant navel gazing. However,
specialists studying the foundations of probability theory are aware that there is an
interpretation problem with the current mathematical concept of a probability measure,
though they may not all realise how vital this problem is. Kolmogorov himself wrote:

I have already expressed the view . . . that the basis for the applicability of the
results of the mathematical theory of probability to real random phenomena must
depend in some form on the frequency concept of probability, the unavoidable
nature of which has been established by von Mises in a spirited manner. . . [But]
The frequency concept [of probability] which has been based on the notion of
limiting frequency as the number of trials increases to infinity, does not contribute
anything to substantiate the applicability of the results of probability theory to
real practical problems where we have always to deal with a finite number of trials.

(Kolmogorov (1963) as quoted in Segal (2003))

Each word of this quotation merits considerable attention, and though it could not be
clearer, it is worth adding a few comments at this point.

There is currently a rather ill-defined, but very potent, belief that the weak law of
large numbers can establish deductively both:

— the existence of a factual probability ‘law’ for any factual random phenomenon; and
— the numerical distribution used in this law for the individual probabilities of the

events involved.

However, this is not the case, since the weak law of large numbers only asserts the
following, where we use the usual notation:

Given a set {ej}, j = 1, 2, . . . q, of events ej (or elementary events, since no distinction
is made here in this respect), if a factual probability law {p(ej)}, j = 1, 2, . . . q, on
this set exists, then, for every ej and every pair (ε, δ) of arbitrarily small real numbers,
there exists an integer N0 such that when the number N of ‘identical’ repetitions of
the experiment Π related to the random phenomenon under consideration becomes
equal to or greater than N0, then the meta-probability†

P [(|n(ej)/N − p(ej)|) ≤ ε] (1)

† We use the prefix ‘meta’ here, and throughout the paper, to mean that the definition of the considered
event or probability involves the events ej or the probabilities p(ej), respectively, so it is conceptually
posterior to these events or probabilities.
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of the meta-event defined by

[the absolute value of the difference (n(ej)/N−p(ej)) between the relative frequency
n(ej)/N counted for the event ej , and what is called the probability p(ej) of that
event ej , is smaller than or equal to ε]

becomes greater than or equal to (1− δ).
This assertion can be expressed more synthetically by the following well-known ex-

pression:

∀j.∀(ε, δ).∃N0.∀N. (N ≥ N0)⇒ P [(|n(ej)/N − p(ej)|) ≤ ε] ≥ (1− δ). (2)

This is also sometimes expressed less precisely by saying that if a probability law
{p(ej)}, j = 1, 2, . . . q, exists on the set of events {ej}, j = 1, 2, . . . q, then for any j,
as N ‘tends towards infinity’, the absolute value of the difference between the relative
frequency (n(ej)/N) and the probability p(ej) ‘tends in probability’ towards 0. However,
the symbol P in the expression

P [(|n(ej)/N − p(ej)|) ≤ ε]

only denotes a meta-probability, so we cannot be certain that the value of the specified
difference tends to 0.

Summing up, what the weak law of large numbers proves is that: if an unknown
factual probability law

{p(ej)}, j = 1, 2, . . . q,

and the corresponding meta-probability law

{P [(|n(ej)/N − p(ej)|) ≤ ε]}, j = 1, 2, . . . q,

both ‘exist’, then, as the number of completed trials increases towards infinity, the math-
ematical tendency of each relative frequency n(ej)/N of an event ej approaching the
initially unknown numerical value p(ej) is itself very ‘probable’ in the sense of the other
meta-probability law

P [(|n(ej)/N − p(ej)|) ≤ ε] ,
which we have assumed to exist.

However, the weak law of large numbers says nothing about what significance should
be assigned to the simple assertion that a factual probability law ‘exists’. All it does is
correlate the two values

P [(|n(ej)/N − p(ej)|) ≤ ε] and p(ej),

for any index j, in a way that excludes certainty and, quite essentially, allows fluctuations,
which are measured by the pair of arbitrarily small real numbers (ε, δ).

The law of large numbers does progressively construct a definition of the a priori
unknown numerical value of an individual probability p(ej), for any index j, in the form
of the famous ‘relative frequency definition’. However, this definition:

(a) is not purely factual because the concept of a mathematical limit is abstract;
(b) is non-effective (as noted above and stressed by Kolmogorov);
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(c) introduces, through the dependence between the numerical values

P [(|n(ej)/N − p(ej)|) ≤ ε] and p(ej),

a sort of logical regression, which develops upwards through a hierarchy of concep-
tualisation levels – a sort of circularity spread out along a spiral;

(d) is thought of as being constructed by the convergence towards the a priori unknown
value of p(ej) on the basis of the mere assumption of the ‘existence’ of the two
probability laws

P [(|n(ej)/N − p(ej)|) ≤ ε] and p(ej),

without in any way specifying what sort of physical features or circumstances this
‘existence’ may consist of.
This convergence is defined exclusively in general mathematical terms through a
priori postulated conditions of convergence, integrability and so on, but these purely
mathematical and general assumptions have not, at least so far, been translated into
a language that can adequately describe the class of physical circumstances at work
when a given probabilistic situation is realised. The conceptual and physical content
of the significance to be assigned to the assertion that a factual probability law
‘exists’ has not been made clear. In this respect, no translation has been elaborated
between the mathematical language in which the weak law of large numbers is
expressed and physical factuality.

Even if we ignore objections (a)–(c), point (d) alone is a very strong criticism. Indeed,
the counted relative frequencies n(ej)/N from (2) can only be thought of as playing the
role of an ideal specification by progressive materialisation of the limiting numerical value
p(ej) if the process of evolution of the relative frequencies n(ej)/N while N increases is
somehow materially constrained throughout this process by the existence of whatever it
is the a priori unknown limit p(ej) denotes in the physical world; otherwise why should
there be any convergence towards p(ej) at all? And we can ask the same question about
the meta-probability P for the meta-events

[(|n(ej)/N − p(ej)|) ≤ ε] .

We might be able to conceive of some sort of progressive emergence of knowledge
concerning the somehow pre-existing values of some qualifier† labelled ‘p(ej)’ of some
unspecified material entity through the material effects of ‘p(ej)’ by following the evolu-
tion of the relative frequencies n(ej)/N considered in (2). However, to achieve a genuine
understanding of such a process, and thus an epistemological command of the meaning
of (2), it would be, at least, very useful for us to have an independent definition of the
factual meaning of the assumption of the ‘existence’ of a ‘probability law’, even if this is
not felt to be an essential conceptual requirement.

† Our use of the term ‘qualifier’ here is similar to its use in grammar, where, for example, an adjective
can be described as a qualifier of a noun. More concretely, a qualifier can be thought of as the result
of an experiment. We will give a precise definition of what we mean by a ‘qualifier’ in point (3) of
Section 3.5.2. We will also use related words, such as ‘qualify’ and ‘qualification’, with corresponding
meanings.
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Kolmogorov’s abstract concept of a probability measure cannot generate an indepen-
dent factual definition of the individual numerical probability values p(ej). This is not its
role since it was constructed simply as the formal representation of the common features
of all conceivable factual probability laws. The individual features of each specific fac-
tual law were omitted from the start, and it was assumed that they were independently
constructible. This means that they are simply not available within the pool of potential
specifications encapsulated by the abstract concept of a probability measure.

It is not unusual for there to be confusion between the characters required for the
primary representation of an individual specific factual instance of a given type and a
purely syntactic framework for the general representation of the whole class of individual
representations of that type. The power of a syntax often induces an implicit belief that
it should be possible to derive factual data from a syntactic system, but this is never
possible. The semantic conceptualisation is primary, and it has specific content, whose
genesis can only consist of direct epistemological/operational/conceptual interactions
between the mind and what we call ‘reality’†. If we invert, a posteriori, some sequence
order within the hierarchy of epistemological assumptions that emerge in the course of
a process of conceptualisation, then, quite systematically, we can produce a long-lasting
stagnation in the subject through the tackling of illusory problems. Even though semantic
content can be located within a syntax, the nature of a syntax is completely different
from the nature of a factual specification.

Other authors had already expressed some reservations about the applicability of Kol-
mogorov’s theory of probabilities before Kolmogorov did. For instance, selecting just one
amongst many possible quotations, Solomonoff wrote:

‘Probability theory tells how to derive a new probability distribution from old
probability distributions. . . It does not tell how to get a probability distribution
from data in the real world.’ (Solomonoff 1957)

However, it was Kolmogorov himself who finally produced a definitive veto on the
application of his mathematical theory to factual problems. In particular, throughout the
1980’s he refused to accept the use Shannon’s central concept of ‘informational entropy’
for assigning numerical estimates to ‘complexities’. For instance, he wrote:

(1) ‘Information theory must precede probability theory and not be based on it. By the
very essence of this discipline, the foundations of information theory have a finite
combinatorial character.’

(2) ‘The applications of probability theory can be put on a uniform basis. It is always a
matter of consequences of hypotheses about the impossibility of reducing in one way
or another the complexity of the descriptions of the objects in question. Naturally
this approach to the matter does not prevent the development of probability theory
as a branch of mathematics being a special case of general measure theory.’

(3) ‘The concepts of information theory as applied to infinite sequences give rise to
very interesting investigations, which, without being indispensable as a basis of

† See Mugur Schächter (2011) for a striking illustration of this assertion.
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probability theory, can acquire a certain value in the investigation of the algorithmic
side of mathematics as a whole.’ (Kolmogorov 1983)

But also, and quite radically, Kolmogorov advocated the elimination of his own for-
mal concept of probability from all the representations that had been considered to be
‘applications’ of this formal concept.

The conceptual situation outlined above is what I call ‘Kolmogorov’s aporia’.

2.3. Conclusions for Section 2

We have seen that Kolmogorov, who was the father of the modern mathematical theory
of probabilities, proposed that his own formal concept of probability, which was epis-
temologically profoundly rooted in concrete human experience and thought, should be
isolated within an abstract cage. And Kolmogorov was a major thinker, so his view
must be taken seriously, even though it represents an extreme stance. Mathematicians
appear to have accepted this view without much resistance, and this has already changed
the direction of research on measures of the degrees of ‘complexity’. However, for many
mathematicians, concepts related to factual entities are viewed merely as shadows of
mathematical concepts – Platonism seems to be consubstantial with mathematics.

For a physicist, however, the following steps seem to be essential:

(1) First base the formal concept of a probability measure, which stems from factuality,
on an explicit and definite meaning that can be assigned to the general assertion
that a factual ‘probabilistic situation’ involves the ‘existence’ of a factual probability
law.

(2) Establish how the numerical distribution of individual probabilities from the factual
probability law involved in a given ‘probabilistic situation’ can be constructed in an
effective way.

(3) Indicate how the conceptual/operational/epistemological organisation of the factual
concept of probability entailed by Steps (1) and (2) can be optimally connected
to Kolmogorov’s probabilistic syntax – either in its present form or appropriately
modified.

(4) Show precisely how the results we may get for Steps (2) and (3) can be connected
coherently with the weak law of large numbers.

(5) Indicate explicitly the domain of applicability of the resulting system.

The rest of the current paper is an attempt to realise this procedure.

3. The framework for treating Kolmogorov’s aporia

Kolmogorov’s probabilistic syntax belongs in the realm of classical thinking, so we shall
restrict ourselves to the classical domain, where the entities to be studied can be perceived
directly and/or can be represented by models. We make this restriction clear from the
start because it turns out, quite surprisingly, that in the case of fundamental quantum
theory, where no models are explicitly formed, the very definability of the famous ‘es-
sential quantum-probabilities’ raises a problem that calls for a carefully constructed and
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specific answer – not to mention the well-known fact that Kolmogorov’s representation
does not apply directly to the quantum case.

The main tool we will use is a general method of relativised conceptualisation, MRC,
which the current author has been developing since 1984†. This method has been devel-
oped by synthesising and generalising results that were originally derived in the context
of a study of the way in which fundamental quantum mechanics is able to signify‡.

So, to help make the current paper more self-contained, this section provides a brief
sketch of the origins and main features of the method of relativised conceptualisation.

3.1. The genesis of MRC: infra-quantum mechanics (IQM)

3.1.1. A hypothesis tied to a historical fact.
Quantum mechanics had no unique initial author – there was no equivalent of Newton,
Maxwell, Carnot, Boltzmann or Einstein. It arose from a relatively large number of very
different contributions by Plank, Einstein, Bohr, de Broglie, Schrödinger, Heisenberg,
Born, Pauli, von Neumann, Dirac and many others, which finally led to a coherent
mathematical theory of microstates in the form of fundamental quantum mechanics§,
which yields predictions based on a system of algorithms. However, even today, the
quantum-mechanical algorithms are cryptic and raise problems of interpretation – nobody
claims to fully understand how or what quantum mechanics signifies.

This is a very peculiar situation, and we are led to ask how it came about.
In seeking an answer to this question, we were led to the hypothesis that every time

a physicist has tried to understand microstates, the cognitive demands imposed have
been so radically different from all those previously encountered, and so extreme, that
no individual mind working in isolation has been able to grasp them globally, and thus
construct a coherent representation – and this same very peculiar cognitive situation
has acted, without becoming wholly explicit, each time the problem has been addressed.
So the construction of the quantum-mechanical formalism has been orchestrated by this
impersonal and very peculiar cognitive situation.

Moreover, what the quantum-mechanical formalism signifies, and how it does it, have
remained cryptic because each time an interpretation question has been formulated and
examined, it has almost always been addressed with respect to the formalism itself rather
than to the cognitive situation that determined the structure of the formalism. As
a result, this cognitive situation and its consequences have never been characterised
explicitly, thoroughly and globally.

† For details, see Mugur Schächter (1984; 1991; 1992b; 1992c; 1993; 1995; 1997a; 2002a; 2002b; 2002c;
2006; 2011)

‡ Our use of the word ‘signify’ here and elsewhere in the current paper is similar to its use in semiotics
where a signifier (a syntactic element) is used to signify (refer to and communicate) the signified (some
concept).

§ We make a clear distinction here between fundamental quantum mechanics, where no models are
explicitly formed, or even permitted in principle, and any preceding or subsequent theories of micro-
scopic physical entities (such as atomic and nuclear physics and elementary particle theories), which
quite explicitly introduce models.
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3.2. A project

The hypothesis formulated in the previous section suggested a project: we should first
make a blank slate of the mathematical formalism of quantum mechanics, and then
try to construct, in strictly qualitative terms, some mutually communicable and agreed
understanding of what we mean by ‘microstates’ based only on the constraints imposed by
the cognitive situation under consideration and the general ways in which humans form
concepts. This project has led to what I have called infra-quantum mechanics (IQM),
which is a sort of epistemological/physical representation of microstates, constructed
independently of quantum theory, but through which the whole way in which fundamental
quantum mechanics signifies finally becomes clear (Mugur Schächter 2011).

3.3. Sketch of the construction of infra-quantum mechanics

In this section, we will give a very brief summary of the construction of infra-quantum
mechanics. In doing this, we will demonstrate the radically fundamental and relative
character of the completely new and unprecedented form of description involved in the
quantum mechanics formalism. Moreover, we will reveal the universality hidden in the
descriptions created in this newly identified form, and the potential benefits it brings.
The main aim of this sketch is to enable a better understanding of Section 3.4, which
summarises the main features of the method of relativised conceptualisation, which is
a generalisation of the method outlined here and was identified specifically for the de-
scription of microstates. Later in the paper, we shall work within this general method of
relativised conceptualisation to develop our solution to Kolmogorov’s aporia.

In the following we will be obliged, at least initially, to make use of pre-existing struc-
tures of thinking and communicating: otherwise, we could not even begin to commu-
nicate the results; indeed, we could not even have begun to work them out. However,
despite this unavoidably classical starting point, the development process we will follow
will progressively induce several non-classical concepts whose verbal formulation, though
presented in familiar language, will involve some radical breaks with classical thinking.
This can be viewed as one of the miracles of thought and language: the structure of the
results may be quite different from the structure of the starting point, and this enables
the emergence of completely new concepts. We shall make free use of this fact.

3.3.1. Descriptions. We say that any knowledge that can be communicated without re-
strictions (such as the restrictions involved in pointing, miming and so on) is a ‘descrip-
tion’. By definition, a description involves an entity-to-be-described, which, in general, is
not necessarily an ‘object’ in the usual sense, together with some qualifiers of this entity.
The basic entities-to-be-described in fundamental quantum mechanics are a priori called
‘states of microsystems’ or microstates for short†. These microstates form a class of

† The stable micro-systems themselves (electrons, protons, neutrons and so on) were first studied in
atomic and nuclear physics, where they were characterised by specific ‘particle’-constants (mass,
charge, magnetic moment and so on). Changes to stable micro-systems (such as, creation or anni-
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hypothetical entities, whose existence is postulated beforehand on historical and method-
ological grounds, but no human being could ever actually perceive them. For entities of
this sort, the construction of qualifiers endowed with some kind of stability raises difficult
and deep questions. Despite this, fundamental quantum mechanics does in fact deal with
microstate qualifiers, which means that some strategy of description must have been at
work, and it has succeeded in overcoming the epistemological difficulties. As mentioned
above, our aim is to describe this emergent strategy using only the constraints imposed
by the cognitive situation involved and general human modes of conceptualisation.

3.3.2. Microstates as ‘entities-to-be-described’.
We will begin by considering the entities-to-be-described, viz. the microstates, in more
detail. Since they cannot be perceived, we cannot study them by just selecting them
from some ensemble of pre-existing entities. Neither can we study entities of this kind by
simply examining observable marks produced spontaneously on macroscopic devices by
‘naturally’ pre-existing microstates, since there would be no criteria for deciding which
mark is to be assigned to which microstate. The only possible general solution is the
following:

(1) We first perform a defined and repeatable macroscopic operation, which we just
assume will generate a given, but unknown, ‘microstate’.

(2) Then, afterwards, we try in some way to ‘know’ something about this microstate we
have supposedly generated.

We will see below how adventurous this approach has been.

So, consider a macroscopically defined operation that we suppose generates a ‘mi-
crostate’. At this initial stage of our inquiry, we know nothing about the content of a
‘microstate’, which is why we have included the quotation marks. It is just an empty
verbal box whose a priori use is determined by a general structural feature of our current
modes of thought, which says that a ‘thing’ can only exist in some ‘state’: a given ‘thing’
is the genus proximus of all the ‘states’ of a ‘thing’, so a ‘state’ is an unavoidable specifi-
cation of this ‘thing’. According to the general linguistic and conceptualisation structures
we use, the thing cannot be without some state, and a state without the corresponding
thing is nonsense. So, according to classical thinking, a thing called a ‘micro-system’
necessarily possesses ‘states’. And quantum mechanics, acting within the basic human
conceptualisation structures, and through the requirement to maintain continuity with
macroscopic mechanics, is concerned with the specific task of establishing knowledge
about the states of microsystems, that is, ‘microstates’. In other words, knowledge must
be cast in pre-established mechanical terms involving what we call ‘position’, ‘momen-
tum’, ‘energy’ and so on.

hilation) are studied in nuclear physics and field theory. The states of stable micro-systems, that
is, the ‘microstates’, are specifically studied in fundamental quantum mechanics (for Dirac the word
‘state’, when it is used in relation to microscopic entities, was short for a ‘way of moving’ (dynamics)).
Within fundamental quantum mechanics, the dynamics of microstates is characterised by distributions
of values of ‘dynamical state-observables’.
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So, the qualifier grids† for the sorts of microstate qualifiers we want to use are also
postulated beforehand, and quite independently of the microstate being considered. Fur-
thermore, in general, when a microstate we wish to study emerges, it is entirely unde-
termined with respect to these qualifier grids, and it is still strictly unqualified. This
radical assertion is in no way weakened by our use of the generic word microstate and
the names of the qualifiers, since, a priori, these verbal labels will only add newly deter-
mined knowledge to our general, pre-existing conceptualisation structures, and do not
specify any further individual content. In short:

When the microstate generated by a macroscopically defined operation emerges, it
is still strictly unspecified and non-individualised ‘mechanically’, or by any other
sort of qualifier, within the a priori conceptual mould consisting of the general
class of microstates.

However, and again in accord with the classical thinking we are currently using, the
generated microstate has to be conceived of as emerging in some way relative to the
operation used to generate it, since otherwise we would immediately be in conflict with
the pre-existing causal structure of the classical conceptualisation, which we decided from
the very start to maintain in order to ensure the intelligibility of our construction – this
was for our own benefit as much as for those we want to establish communication and
agreement with. So, at least to begin with, we are obliged to admit this relativity, though
later results may mean we could decide to re-examine it critically‡.

Furthermore, causality, together with our general modes of thought, force us to think
of the generated unknown microstate beginning its existence within the immediate neigh-
bourhood of the place where the generating operation occurred (Kant postulated that
the assignment of some spatial location to any perceived, or merely conceived, physical
entity is inescapably required by ‘an a priori form of human intuition’, and this view,
though many ignore it, has never been refuted).

Now, this notion that the microstate introduced by a given generating operation is
somehow relative to this operation allows us to label it: this microstate is a result of this,
known, macroscopically defined operation of state generation. Specifically, if we write
G to denote the macroscopically defined generating operation under consideration, with

† The notion of a ‘qualifier grid’ encapsulates the requirements for determining qualifier values. A
qualifier grid consists of:

(a) a semantic domain;
(b) a list/specification of possible values imposed on the semantic domain;
(c) a measurement procedure producing results that can be read directly or indirectly in some way

using the human senses;
(d) a procedure to translate the results of (c) into one, and only one, of the values defined in (b),

which can be communicated to and understood in a unique way by others.

See point (4) of Section 3.5.2 for more about ‘qualifier grids’.
‡ However, we can say immediately that causality will have been ejected from the final representation
we obtain as a result of the first stage of human conceptualisation we are just beginning to consider,
but this will not introduce any inconsistency because the process of conceptualisation itself and the
results it produces are fundamentally distinct entities – see Mugur Schächter (2011, Chapter 5).
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the requirement that it be reproducible in some communicable way, we will write msG
to denote the corresponding microstate.

Though at this stage the symbols G and msG are still devoid of any mathematical
content, their introduction is of utmost importance since it allows us to communicate
the fact that the generated microstate, though it is completely undetermined from the
point of view of the specific qualifiers that we are using to investigate it, is, nevertheless,
made stably available for ‘study’. In this sense, it has been captured. From now on, by
reproducing G, we can produce as many ‘copies’ or ‘replicas’ of the microstate denoted
by msG as we want. Also, each replica can be subjected to some subsequent operation
of ‘examination’, and we will be able to communicate clearly what we have done using
words and signs. However, this does involve an assumption, namely, that any realisation
of the operation G produces a replica of one and the same microstate msG:

A microstate will be stable in the role of an entity for which qualifier values can be
determined through subsequent experiments if and only if we assume a one-to-one
relation G↔ msG.

Determining the validity of this assumption is far from trivial, but it has been very
thoroughly examined elsewhere†, so here we shall just assert the conclusion that, in the
cognitive situation being considered, this assumption is simply unavoidable. Without it,
we could not even begin to construct any knowledge about microstates. On the other
hand, the consequences of accepting this assumption have been illuminating. So we shall
make the assumption as a methodological decision, which we can re-express as follows:

The result of any realisation of the macroscopically defined generating operation
denoted G, whatever it may be, is called ‘the’ microstate corresponding to G (note
the use of the definite article ‘the’) and is denoted by msG.

In this way, we now have an aconceptual specification, or ‘definition’, of an unlimited
number of replicas of the entity called ‘the microstate msG corresponding to G’. In
other words, we have a purely operational/factual specification of an entity for which the
values of any qualifiers that could be used to identify it within the whole class labelled, a
priori, by the word ‘microstate’ are still strictly unknown. Note that G is not a qualifier
of msG; it only tells us how to produce msG (for example, the fact that we know how
a baby has been produced, does not mean we know anything about the properties of
that baby itself ). However, although G does not qualify what we have labelled msG,
this sort of ‘definition’ of msG can be communicated, with an agreed meaning. This is
very remarkable: it finally enables us to get around the lack of any predicate allowing
us to define a microstate in the usual, classical way. Indeed, classically, a definition is
usually realised verbally/conceptually using predicates that both define and qualify it at
the same time (for example, if we look up ‘cat’ in a dictionary, we find (Webster, fourth
edition of the Merriam series) ‘carnivorous domesticated quadruped. . . ’).

† A very thorough argument was given in Mugur Schächter (2011) for microstates. The question was also
examined in general terms, in complete detail and through all its stages, in Mugur Schächter (2006)
– see also Mugur Schächter (2002a) and Mugur Schächter (2002b), and other earlier work.
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So we have now completed the first step in our project on the basis of a methodological
decision that introduces a radical non-classical separation between an entity in the role
of an object-to-be-qualified and any subsequent possible operations qualifying this entity.

3.3.3. Qualifying a microstate: the emergence of a ‘primordially’ statistical and ‘trans-
ferred’ qualifier.
We can now begin the second step in our project, namely, the construction of knowledge
about the specific microstate msG generated by the operation G.

3.3.3.1. The general problems. The microstate msG cannot be observed as it emerges
from the operation G, so it has to be made to trigger some phenomena that can be
observed through the human senses. This can only be done by means of some macroscopic
apparatus that can interact with the generated microstate msG.

In general, however, this interaction will change the initial microstate msG.
Furthermore, the observable phenomena produced by an interaction between a replica

of msG and some macroscopic apparatus consist purely of some observable (visible, au-
dible and so on) marks, which are displayed by the registering devices on the apparatus,
and not by ‘msG’ itself. The only way we can think of these marks is that they are the
results of interactions between the microstate and the apparatus, and these results are
then transferred to the registering devices on the apparatus.

Now, the observable marks resulting from an interaction between a replica of the
microstate msG and some macroscopic apparatus never trigger in the observer’s mind
some qualia enabling us to ‘feel’, in a direct way, the nature of the qualifier for which
the apparatus has been designed to register a qualitative or numerical ‘value’ (unlike,
for example, what happens when ‘red’ is perceived and is directly felt to belong to
the category of qualia called ‘colour’). Therefore, determining what is signified by the
transferred registered phenomena given in terms of a value of a given qualifying quantity
has to be entirely constructed in some conceptual/operational way, and this is a far from
trivial task.

The mathematical formalism of quantum mechanics was developed specifically as a
mechanics applicable to microstates. Within this formalism, the classical mathematical
definition of each mechanical quantity XM has been re-expressed, again mathematically,
through a formal extension of the classical definition. However, both the classical defi-
nition and its extension involve some model of the classical concept of a ‘moving body’.
Furthermore, within infra-quantum mechanics, unlike the case for fundamental quantum
mechanics, as we will stress later, we have deliberately excluded mathematical represen-
tations as well as models so that we can discuss the consequences entailed exclusively by
the cognitive conditions and the general ways humans form concepts that are involved
when we try to construct knowledge about what we have called microstates. Nevertheless,
we want to construct a representation of ‘knowledge’ for microstates that, though strictly
qualitative in character and completely lacking any model, can in the end be compared
with the mathematical representations used in quantum mechanics. So, infra-quantum
mechanics must somehow allow us to refer, when desired, to ‘mechanical’ quantities as
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some sort of special case. We will now present a very brief sketch† of how this can be
achieved without violating the strict conditions we have imposed on our approach.

Consider a ‘test’ operation X that is realisable on a microstate through the use of some
macroscopic apparatus A(X), and each realisation of which ends up in a ‘transfer’ to the
registering devices of A(X) of a set of marks {µX} that can be directly perceived by the
human senses‡. We call the set of all such sets of transferred observable marks under
consideration the spectrum of factual data corresponding to the test operation X.

We will now assume, based on conceptual and historical facts, that what we have called
a microstatemsG is such that for anymechanical quantityX that has been defined within
classical mechanics, there exists at least one test operation X(X) that, in some definite
sense, ‘corresponds’ to the classical mechanical quantity X, so that it can be regarded
as an operational translation of this classical mechanical quantity that can be applied
to microstates: this hypothesis is only concerned with the existence of an established
connection between the mechanical quantity X and the test X(X), which is not specified
any further here. Nevertheless, on the basis of this minimal existence hypothesis, the
symbol X(X) makes us think of a previously defined mechanical quantity X. On the
basis of this hypothesis, we can consider saying that X(X) is a mechanical test, and that
X(X) can be thought of as representing a ‘measurement’-interaction M(X) for which
the result indicates a numerical value Xj of the mechanical quantity X. But for this
to be useful, it must also be associated with a coding rule that translates any set of
observable marks {µX} produced by one realisation of the test X(X) on msG into one
definite numerical value Xj from a set {Xj}, j ∈ J , of possible numerical values of Xj

assigned to the quantity X tied to the test operation X(X) (here, the index set J is
discrete and finite by construction to ensure effectiveness).

Hence, finally, if and only if we can actually produce an appropriate conceptual/
operational/methodological construct realising such a coding, we shall indeed be able to
write that X(X) ≡ M(X), and in that case, the finite set of all the possible numerical
values Xj obtained through the numerical coding of the sets {µX} of observable marks
that can be produced by the measurement interaction M(X) will be called the spectrum
of the mechanical quantity X attached to test operation X(X). Correspondingly, A(X)

will be regarded as an ‘apparatus for measuring X’.
If we now suppose that all the above requirements are satisfied, then, although we

have worked exclusively within the constraints entailed by the cognitive situation and the
ways humans form concepts, the process of constructing a strictly qualitative consensual

† The solution to this very important problem is treated rigorously and in detail in Mugur
Schächter (2011, pages 73–88) and Mugur Schächter (2013 points 2.3.2.2–2.3.2.4). The solution en-
tails a result that, through a confrontation between infra-quantum mechanics and the mathematical
formalism of quantum mechanics, is used in Mugur Schächter (2013) to do away with the central
quantum-mechanical interpretation problem, namely, ‘the problem of measurement’.

‡ In order to ensure effectiveness, we assume that the number of distinct sets {µX} is finite. This is
the only practically realisable assumption we can make since any numerical estimate performed on
these marks, even if only concerning their space–time location, introduces units, and thus discreteness.
Furthermore, we are always confined to a finite number of tests.
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knowledge about microstates, which we call infra-quantum mechanics, seems possible,
and we can continue with this as a basis.

However, the central condition of an unambiguous numerical coding of the observable
data produced by the test operation X(X) immediately raises a new obstacle:

The assumption of transpositions of classical mechanical properties such as ‘po-
sition’ and ‘momentum’ that can be applied to microstates necessarily involves
some model of a microstate, even if it is only a very vague model.

In the absence of any such model, or any qualia indicated by the sets {µX} of observ-
able data, there can be no conceivable connection whatsoever between the ‘mechanical’
description of a microstate and the classical mechanical descriptions achieved through
qualifying quantities that have been extracted by abstraction from the qualia carried by
the directly observable motions of macroscopic bodies. This means that we could not
justify any assertion that some given sort of measurement interaction M(X) ≡ X(X)

corresponds precisely to some particular classical mechanical quantity X. And, indeed,
a careful examination shows that, contrary to the current orthodoxy, as asserted by
Bohr and others, that quantum mechanics is free from any model, de Broglie’s ‘wave–
corpuscle’ model has remained implicitly, but quite organically, incorporated in the
quantum-mechanical mathematical algorithms used to represent an act of measurement
(Mugur Schächter 2011, pages 77–80).

This organic connection between the definability of a measurement interaction M(X)

and a model of a microstate appears at first sight to be an insuperable obstacle for
an approach that not only forbids mathematical representations, but also any model
attached to the general concept of a microstate.

However, we have been able to get around this difficulty by using a general frame-
condition, which enables us to code any set of observed marks using, exclusively, the
space–time locations of the marks. In this way, we are able to tolerate a void at the
core of our approach in the specification of the semantic contents of the observable
marks produced by the measurement interactions M(X) tied to a test operation X(X)

(Mugur Schächter 2011, pages 81–87). As in the case of the measurement interactions
themselves, the semantic specifications of the results of these measurement interactions
are only assumed to exist in some sense and on some level of conceptualisation that will
be specified later.

The coding of the marks according to the general frame-condition mentioned above
only distinguishes any two given sets of observable marks from each other, without
specifying any semantic content, or, a fortiori, any numerical value.

This is sufficient for us to continue the construction.
However, in order to justify a particular mechanical name, such as a ‘position mea-

surement’, ‘momentum measurement’ or ‘total energy measurement’, we must inevitably
assume some model of a microstate in the same way as in quantum mechanics, even if it
is done there in a non-declared and implicit way. However, we stress that:

An acceptance of the existence of a model of a microstate, or even a specifica-
tion of such a model, does not prevent the measurement processes from hav-
ing a purely transferred character: quantum-mechanical measurements are, quite
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strictly, transfer-measurements in the sense that they only produce marks that
are observable on a registering device and are devoid of any qualia relatable in a
definite way to the studied microstate.

Having said this, in order to achieve direct comparability with the formalism of fun-
damental quantum mechanics, we will consider mechanical tests X(X) ≡ M(X) tied to
‘measurement’ operations and leading to numerical values of mechanical quantities.

3.3.3.2. The emergence of a ‘primordially’ statistical level of conceptualisation. We now
ask whether a numerical value Xj that codes for a set of transferred observable marks
{µX} produced by a measurement interactionM(X) of the kind characterised above can
be thought of as qualifying the microstate itself.

The answer is obviously no. According to our general causal conceptualisation struc-
tures, the measurement interaction M(X) must, in general, be thought of as changing
the microstate msG that was initially created by the generating operation G (this is for
reasons similar to those that obliged us earlier to assume that whatever is produced by a
given generating operation G is somehow relative to G). So, the observable transferred
marks must also be thought of as emerging relative to the mentioned change, and thus
also relative to the sort of measurement interactionM(X) being used. It follows that the
transferred marks can only give a global characterisation of the measurement interaction,
and not of the (hypothetical) microstate msG separately.

However, we can still cling on to the fact that the observable marks are also relative
to the initially created microstate msG. So we have to take into account the fact that
the initially produced object microstate msG is subject to two clearly distinct processes
of change, which correspond to two clearly distinct measurement interactions M(X) and
M(X ′) realised using two distinct pieces of apparatus A(X) and A(X ′) that are tied to
two different mechanical quantities X and X ′, and that, in general, cover two different
space–time domains. Now, when this happens, the corresponding measurement interac-
tions M(X) and M(X ′) cannot both be achieved simultaneously for a single replica of
a microstate msG. So, in this sense, these two measurement interactions are mutually
incompatible†.

Furthermore, in general, a measurement evolution may destroy the microstate msG
initially produced by the corresponding generating operation G.

It follows that if we want to obtain observable qualifiers for the microstate msG in
terms of the values of both of the quantities X and X ′, in general, we have to generate
more than one replica of msG because we have to achieve two different types of sequence
of the form

[G.M(X)] ∼= [(a given operation G generating a microstate msG),

(a measurement interaction on msG)]

† The restriction to one replica of the considered microstate msG is not explicitly required in current
presentations of the quantum-mechanical concepts of incompatibility and complementarity, though
these concepts do involve it quite essentially.
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specifically, the sequences [G.M(X)] and [G.M(X ′)] (the clock is re-set at the same initial
time-value t0 for each realisation of a sequence of this kind).

Furthermore, if we try to ‘verify’ the result by repeating the measurement interaction
for just one quantity X with a given microstatemsG through the corresponding sequence
[G.M(X)], we do not, in general, systematically get the same value Xj . If this does
happen (that is, we always get the same value) for some given quantity X, then it does
not happen for a quantity X ′ that is incompatible with X in the sense defined above:
this is a basic empirically observed fact. So, in general, the results are distributed over
the whole spectrum {Xj}, j ∈ J , of possible values of Xj of the quantity X tied to the
test operation X(X) (where J is a discrete index set).

This means that the global observational situation that emerges from measurement
interactions with microstates is essentially statistical. And the nature of this statisti-
cal character is ‘primordial’ in the sense that it marks the very first sort of knowledge
that can be generated about microstates (see Mugur Schächter (2002c) in connection
with Longo (2002)), and thus about matter. Therefore, at this primordial level of con-
ceptualisation, the statistical character cannot be attributed to mere ignorance of some
more basic conceptualisation that might have been achievable previously in individual
deterministic terms, at least in principle (this assumption is always made in classical
thinking with respect to any sort of statistical data). It is only through explicit models
that might be constructible in the future on some higher level of conceptualisation than
the one at which the primordially statistical transferred descriptions emerge that a fully
non-statistical description of a particular microstate could be worked out.

The first level (chronologically) in the sequence of conceptualisation levels, when start-
ing from aconceptual physical reality, has a non-removable, essentially primordial char-
acter.

3.3.3.3. The peculiar descriptional form tied to primordially statistical transferred mi-
crostate qualifiers. The previous section showed that the sort of stability that can be
observed for a microstate (one that can be investigated at the primordial level of the
conceptualisation of microstates) can only be statistical. At this primordial level, we can
only study a descriptional invariant through repetition of the same sequence [G.M(X)]

for each given pair (G,X).
But exactly what sort of invariant can this be? It is tempting to give as a first answer:

It is a probabilistic invariant, with a probability ‘law’ p(G,X), j ∈ J , tied to the
pair (G,X).

But this just brings us back to the problem described in Section 2 concerning the absence
of a factual definition of the ‘probability law’ to be asserted in a given factual ‘proba-
bilistic situation’, in other words, a definition that is independent of the definition given
by the weak law of large numbers in expression (2) on Page 8, which we showed to be
non-effective and indefinitely recursive.

Kolmogorov’s aporia, which emerged within classical thinking, appears in its most
basic manifestation when we try to make use of the concept of probability in
connection with the study of microstates.
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And it may turn out that the concept of probability cannot be constructed within the
first level of conceptualisation, where the descriptions of microstates are originally worked
out†.

So, for the moment, all we can factually achieve is to realise, for each pair (G,X)

being studied, a finite number q of series of N repetitions of the corresponding sequence
[G.M(X)], with N successively taking on values drawn from some finite collection of
increasingly large numbers N1, N2, . . . Nk . . . Nq, and then determine whether there is
any tendency towards convergence for the relative frequencies of the corresponding sets

{n(G,Xj)/N}, j ∈ J, N = N1, N2, . . . Nk . . . Nq.

Nothing guarantees, a priori, the existence of such a convergence: it is not a logical
necessity, and if no convergence were found, we would be obliged to give up finally on
our aim of constructing some stable observable knowledge about microstates.

In fact, it turns out that for any pair (G,X), there is a tendency towards convergence;
of course, it is a fluctuating convergence while the integer Nq is kept definite, finite and
effective. In these conditions, and assuming a restriction to effective procedures and
the absence so far of any general procedure for constructing the factual probability law
for a given factual situation, we can only postulate a specification for such a law. For
instance, we could postulate that the relative frequencies from the set {n(G,Xj)/N},
j ∈ J , measured for the longest series of repetitions Nq of the sequence [G.M(X)] will
be assimilated by convention to the unknown factual numerical distribution of individual
probabilities. This just amounts to deciding to write

{n(G,Xj)/Nq} ∼= {p(G,Xj)}, j ∈ J,

that is, to assigning to the ratio n(G,Xj)/Nq, j ∈ J , the role played by p(ej) in the weak
law of large numbers. In this way, we introduce a sort of ‘pre-probabilistic knowledge’
about the microstate msG, which is simply founded on a factually observed tendency
towards convergence. This knowledge, under the cover of the dense cloud of confusion
surrounding the concept of probability, is then treated by a hidden convention as a piece
of factual ‘probabilistic’ knowledge‡. Specifically, in this case, there is a pre-probabilistic
qualifier, which has a non-removable relativity to the triad (G,msG,M(X)). We will call
this sort of transferred pre-probabilistic effective qualifier, involving some conventional
choice, the transferred description of the microstate msG ↔ G through the qualifying
‘mechanical’ transfer-view VM (X), and it will be denoted by the symbol

D/G,msG, VM (X)/.

† Within mathematical quantum theory, it is largely accepted, more or less explicitly, that the math-
ematical formalism involves the possibility of determining the probability law (and not just some
statistical distribution) corresponding to any factual situation concerning a microstate. Historically,
this view stems from what is called ‘Born’s algorithm’, and possibly also from Gleason’s theorem on
‘probability’ measures in a Hilbert space (Gleason 1957). This view, which the current author does
not share, will be discussed briefly at the end of the current paper.

‡ Indeed, something precisely like this is currently carried out systematically in any classical probabilistic
situation, though often implicitly.
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This symbol is written in a way that explicitly recalls the origins of the description and
the relativities it involves (the ‘mechanical’ transfer view VM (X) is just a new name and
notation for the measurement interaction M(X)). But we stress again that the descrip-
tion itself, the global qualification we have obtained, is just the partially conventional
pre-probability law

{n(G,Xj)/Nq} ∼= {p(G,Xj)}, j ∈ J
introduced above.

3.3.3.4. Characterisation of a microstate. We have already noted that the strategy im-
posed by the cognitive situation we find ourselves in while constructing knowledge about
microstates has led to qualifiers that must be postulated to involve the microstate, but
cannot be assigned to it alone, in isolation. This may already seem to violate the clas-
sical concept of a description. So we will now investigate whether perhaps at least
the peculiar sort of knowledge we have just constructed and denoted by the symbol
D/G,msG, VM (X)/ could be considered to be characteristic of the microstate msG, that
is, whether it can be considered to apply exclusively to the microstate msG. The general
answer to this question is no: if, as conceived above, VM (X) introduces only one quantity
X, there can be no reason to assert that the same pre-probability law {p(G,Xj))}, j ∈ J ,
we have found for the microstate msG, and thus for the pair (G,Xj), could never also
arise for another pair (G′, X) with G′ 6= G, but the same qualifying quantity X.

However, if we consider the case where the mechanical view VM introduces two mu-
tually incompatible measurement interactions M(X) and M(X ′) carried out on different
replicas of a single microstate msG, then it seems safe enough for us to consider that
these two distinct measurement interactions act like two distinct ‘qualifier dimensions’,
which, in combination, through some sort of ‘intersection’, determine a characterisation
of msG; that is, that no other generating operation different from G can generate a
microstate for which exactly the same pair of pre-probability laws as those obtained for
msG ↔ G with M(X) and M(X ′) emerges. This is even more likely to be the case if all
mutually incompatible pairs (G,X) are considered, where X runs over all the mechani-
cal quantities redefined for a microstate: the set of all the pre-probability laws p(G,X)

corresponding to all these mutually incompatible pairs can be quite safely considered to
express a specificity of the studied microstate msG. So we are led to introduce a general
concept of a view V defined as a union of aspects, which are specifically mechanical
aspects in our case. We will denote this general concept of a mechanical view by VM
and call it the global mechanical qualifying view defined for microstates, which consists of
the union VM = ∪VM (X) with X running over all the qualifying mechanical quantities
defined for microstates. Hence, ‘the’ pre-probabilistic transferred mechanical description
of the microstate msG (note the use of the definite article ‘the’) can be denoted by the
symbol D/G,msG, VM/.

In this way, the initial descriptional form

D/G,msG, V (X)/,

which could not be considered to fully characterise a given microstate, has been com-
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pleted into a relativised description D/G,msG, VM/ through which we can achieve such
a characterisation.

We can now conclude by saying that a transferred description of a microstate msG
consists, exclusively, of a set of one or more partially conventional ‘pre-probability distri-
butions’ on sets of observable marks {µX} transferred to (in general) various registering
devices belonging to various pieces of apparatus, and expressed through definite coding
rules in terms of the values Xj from the spectra of qualifying mechanical quantities X.

Such a description asserts strictly nothing about how the microstatemsG ‘is’ itself,
nor even where or when it ‘is’.

So, in order to create knowledge about microstates, we have made use of the pre-
existing general features of our human conceptualisation, and these, quite fundamentally,
have involved, in particular, the acceptance of causality (when we postulated the rela-
tivity of msG to G, and the relativity of the observable marks {µX} to both msG and
M(X)). Despite all this, the final result is a descriptional form D/G,msG, VM/ that does
not even assign a connected space–time support to the microstate msG through its trans-
ferred description. This break with classical thinking has been produced progressively,
through inevitable steps that have been required by the conditions successively imposed
in order to define the entity-to-be-described and the way this entity can be qualified:
in other words, in order to describe it, which is, in its turn, strictly synonymous with
creating communicable knowledge about this entity.

The absence of a definite and connected space–time support for a microstate (not the
transferred observable marks tied to it), together with the required coding of these marks
stripped of any semantic content tied to the described microstate, makes the concept of
a transferred description D/G,msG, VM/ completely non-classical and unintelligible. In
this way, this sort of description triggers a strong need for qualifier values involving qualia
that can be thought of as being ‘possessed’ by msG within some connected space support
covered by msG. But for this sort of ‘explanation’, the primary transferred description of
a microstate requires some explicit and declared model of a microstate, and this require-
ment takes us beyond infra-quantum mechanics. It also takes us beyond fundamental
quantum mechanics. However, once we have left these primordial representations, there
is nothing to prevent us from constructing such a model†.

3.3.3.5. The global space–time tree-like structure of the transferred description of a mi-
crostate. We will now return to the mutual incompatibility of the evolutions of two
measurement processes that cover different space–time domains, which thus prevent a
simultaneous realisation using a single replica of the microstate msG. Such mutual
space–time incompatibilities mean that the set of all the physical sequences [G.M(X)]

that involve the same generating operation G is divided into subsets of mutually in-
compatible classes of mutually compatible sequences [G.M(X)]. This, by a ‘geometrising’

† The so-called ‘impossibility’ theorems that claimed to eliminate the constructibility of any such nor-
mal, causal, space–time model were invalidated by the current author in Mugur Schächter (1964) and
Mugur Schächter (1979).
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process of integration, produces a new type of pre-probabilistic structure in the form of a
tree-like space–time structure founded on a common ‘trunk’ corresponding to the space–
time domain dG(tG − to) covered by the realisations of the generating operation G, and
possessing as many measurement interaction ‘branches’ as there are mutually incompati-
ble classes of mutually compatible operations of the type considered, each branch covering
a specific space–time domain and generating at its top a corresponding Kolmogorov-type
pre-probability space†. We shall call this structure the pre-probability tree of the pair
(G,VM ) and denote it using the symbol T (G,VM ). Figure 1 shows an example with two
branches corresponding to two quantities denoted by X ∼= B and X ∼= C for simplicity,
with the two pre-probability spaces

[(C1, C2, C3, . . . Ck, . . . Cn), p(G,C)]

and

[(B1, B2, B3, . . . .Bj, . . . Bm), p(G,B)],

respectively, at the top of each of them. (For simplicity, the algebra on the universes
of elementary events (C1, C2, C3, . . . Ck, . . . Cn) is omitted, and the pre-probability law
{p(G,C)} is defined directly on the universe of elementary events; mutatis mutandis the
same applies for the universe (B1, B2, B3, . . . Bj, . . . Bm) and p(G,B).)

3.3.4. The need for a deeper and extended general theory of probabilities.
We have shown elsewhere that the qualitative descriptional form D/G,msG, VM/ with
the tree-like space–time structure T (G,VM ) encapsulating its complete integrated, ‘ge-
ometrised’ genesis introduces a number of features that go beyond Kolmogorov’s classical
concept of a probability space. It does this quite essentially and in several important
ways‡, specifically, with respect to:

— the full representation of the structure of the random phenomenon being considered;
— a meta-‘probabilistic’ dependence between the events of the mutually incompatible

probability spaces at the top of the branches (which involves accepting a specific
mathematical representation that is new within the general concept of correlated
probability spaces);

— a pre-organised sensitivity to the logical aspects of the set of all the elementary events
and events involved, whether compatible or incompatible, which it turns out are not
expressible through a lattice structure.

In this way, the concept of a pre-probability tree of the pair (G,VM ) requires an extended
and deeper concept of ‘probability’ unified with a corresponding logic of all the events
involved.

† These space–time specifications arising from the ‘geometrising’ integration of the genesis of a trans-
ferred description D/G,msG, VM/ do not in the least alter the fact that there is no intrinsic space–
time specification of the microstate msG itself.

‡ A detailed examination of the concept of the pre-probability-tree of a microstate produces several
deeply non-classical results – see Mugur Schächter (2011, pages 119–131).
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Figure 1. Pre-probability tree T (G,VM (B,C)) of a pair (G,VM (B,C)) where VM (B,C)

involves two mechanical aspects B and C only.

This programme was partially achieved in the papers Mugur Schächter (1992a; 2002a;
2002b; 2006) in terms that are generalised to any relative description†.

3.3.5. Conclusions from the discussion of infra-quantum mechanics (IQM)
The descriptional form D/G,msG, VM/ together with the geometrised, integrated tree-
like space–time structure encapsulating its genesis, along with the consequences of this
structure, lies at the heart of the strictly qualitative, physical/epistemological type of
representation of microstates that we have constructed independently of the mathematical
formalism of quantum mechanics. We have called this infra-quantum mechanics, or IQM
for short‡.

In the current paper, we have only given a brief sketch of infra-quantum mechanics
in an extremely simplified form. But when developed in full detail, it sheds light on
the whole way in which the quantum theory manages to signify. In particular, it allows
us to separate what has been introduced into quantum mechanics by an extension of
classical models aimed specifically at the construction of a mechanics of microstates

† In the current paper, we have tried to ensure an unrestricted generalisation, but only within the
classical domain. The problems concerned specifically with the primordial domain of conceptualisation
on which the basic descriptions of microstates is constructed will be set out clearly in Section 8.

‡ We use the prefix ‘infra’ here to mean lying beneath the mathematical formalism, and partially
encrypted in it.
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from what has been induced purely on the basis of the cognitive situation, the general
requirements of the ways humans form concepts and the aim of constructing knowledge
about microstates.

It is striking that, notwithstanding the elements of classical models encrypted in its
formalism, the actual descriptions involved in the mathematical quantum theory are
transferred descriptions of the form D/G,msG, VM/, which are identified within IQM
and involve the tree-like space–time structure T (G,VM ). These descriptions are in no
way concerned overtly with the model of a microstate implied by the formalism, but
are explicitly only connected with the observable marks produced by the measurement
interactions. The model has been digested by the formalism, and assimilated within
it. This epistemological schizophrenia exhibited by the quantum-mechanical formalism
fuels its capacity to offer formal definitions of mechanical quantities (through eigenstate
equations and the corresponding eigenvalues), and then to imagine corresponding ade-
quate measurement operations. On the other hand, these processes, which result from
a disconnected and hidden model, are strongly related to the unintelligible character of
the formalism.

A systematic comparison between infra-quantum mechanics and the mathematical
formalism of quantum mechanics should now allow us to deal in a unified and coherent
manner with all the interpretation problems, and to achieve an organised solution of
them. But this goes beyond the scope of the current paper, which only aims to identify
in an effective manner the factual probability law to be asserted in any given factual
probabilistic situation.

We showed in Section 2 and the earlier part of Section 3 that the problem of defining
an effective factual probability law in any given probabilistic situation remains at least
as open in the case of the primordially statistical transferred descriptions of microstates,
which form the basis of all current physical knowledge, as in the classical domain of
probabilistic thinking. And it is precisely through a generalisation of the descriptional
form D/G,msG, VM/ (which was constructed within infra-quantum mechanics for the
particular case of microstates) that we shall be able to propose a solution to Kolmogorov’s
aporia. However, in order to introduce this generalisation, we shall first need to consider
a certain universal property that is entailed by the descriptional form D/G,msG, VM/.

3.4. Universality and perception of the possibility of a general method of relative
conceptualisation

We have seen that in order to achieve a transferred description D/G,msG, VM/ of a
microstate, we need to:
(a) Determine the physical epistemic operation denoted by G that introduces a corre-

sponding entity-to-be-described msG independently (in general) of any epistemic
action through which this entity could be qualified.

(b) Determine the measurement interactions M(X) that lead to qualifications of the
entity msG.

(c) Realise both operations G and M(X) in a new and fundamentally constructive
way by first generating physically in space–time a new entity-to-be-described that
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did not already exist (as opposed to just selecting it from a collection of already
available physical objects) and then, afterwards, generating, again physically, ob-
servable manifestations of msG (rather than just detecting ‘properties’ that are
assumed to already exist and be ‘possessed’ by this entity).

(d) Realise the sequence [G.M(X)] a large number of times for each quantity X in-
volved in the view VM used so that we can try to find (at the level of observable
manifestations of msG, which inevitably have a statistical character) a set of in-
variants that constitute a sufficiently stable qualification that is characteristic of
msG.

Steps (a)–(d) summarise a maximally explicit and creative way of producing descrip-
tions in which all the relativities involved are made apparent in turn, and are active and
obvious. Hence, the resulting final description D/G,msG, VM/ is explicitly relative to
each of the elements of the triad (G,msG, VM )†.

We believe that the descriptional form D/G,msG, VM/ (with its inherent relativi-
ties, its development dominated by methodological decisions, and its epistemolog-
ical consequences (Mugur Schächter 2002a; 2002b; 2006; 2011; 2013)) constitutes
a crucial insight into the way humans generate knowledge.

It is very important to realise that the degree of explicitness and constructivity that
characterises our development of the descriptional form D/G,msG, VM/ is ignored in
most current classical conceptualisations, as reflected in natural languages, classical logic,
classical probabilities and classical physical theories, including Einstein’s relativistic the-
ories. In classical conceptualisations, it has always been possible to suppose, though
usually implicitly, that the entities-to-be-described pre-exist the descriptional process
and are ‘defined’ in advance by ‘properties’ that these entities ‘possess’ intrinsically,
independently of any act of observation and in an already actualised way. Before the
peculiar aim of describing microstates had been conceived, these assumptions had never
led to any notable difficulties. Therefore, classically, a description is thought of as con-
sisting exclusively in the ‘detection’ of one or more of the ‘properties’ ‘possessed’ by the
entity-to-be-described, which itself, is assumed to pre-exist either as an ‘object’ in the
usual sense, or as a ‘situation’ or an event, and so on.

Classically, no consideration at all is given to the question of how an entity-to-be-
described is introduced.

As a result, the very deep consequences of the way in which an entity-to-be-described is
generated are almost systematically ignored‡.

† It might seem at first sight that the relativity to msG can be absorbed within the relativity to G, but
this is not the case: the results of the sequences [G.M(X)] depend explicitly on msG and cannot be
derived from G.

‡ This is even the case in fundamental quantum mechanics, where, for linguistic reasons, many physicists
erroneously identify the operation G of generating a microstate with what is called the ‘preparation
of the state vector for registering the result for an eigenvalue’, which, in fact, is involved exclusively in
the operation of qualifying that microstate through measurement interactions. This means assuming
that, like a classical ‘object’, the microstate to be qualified is already there. In any case, the operations
that generate microstates are certainly not mathematically represented within the formalism; they
are not even assigned a symbol.
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Moreover, the process of examination that qualifies this entity is reduced to a single,
simple, static act of detection. And this final classical reduction is the source of what
are currently the most explicitly stated differences between the logic and probabilities
involved in the descriptions of microstates and classical logic and probabilities.

However, it is noteworthy that, although the descriptional form D/G,msG, VM/ does
not appear in classical logic and probabilities, which form the two most fundamental
classical syntactical structures, it is, nevertheless, quite obviously involved in many cur-
rent classical epistemic procedures. Indeed, once the peculiar and very difficult cognitive
situation dealt with in describing microstates has been fully appreciated, as well as
the descriptional strategy that has allowed us to overcome this difficult cognitive situa-
tion, there is a sudden inversion in our perception of the issues, which is similar to the
way our interpretation of a gestalt optical illusion can flip from one version to another.
What at first sight had seemed to be fundamentally new and surprising in the form
D/G,msG, VM/, now suddenly appears to be endowed with a certain universality, even
normality. Indeed we can immediately say that:

— Any explicit and complete account of a given process of description must include a
specification of the action through which the entity-to-be-described is introduced, as
well as a specification of the operation, physical, abstract or both, that is used to
qualify this entity.

— These two actions are often mutually independent.
— The introduction of the entity-to-be-described is sometimes achieved by creation of

this entity, while the qualifying operation, if it is a physical process, always, at least
in principle, changes the object-entity, and sometimes it changes it radically. Hence,
the consequences of the relativity to either or both of these basic epistemic actions
for the resulting description must be explicitly taken into account and thoroughly
analysed.

For instance, consider the actions of a detective searching for material evidence related
to a crime. He usually focuses his attention on a relevant location, say the scene of
the crime, and there he first extracts some samples (he cuts out fragments of cloth, he
detaches a clot of coagulated blood, and so on); he might even create a complete test
situation involving the suspects so that he can record their behaviour. Only afterwards
does he examine the samples he has collected or the behaviours recorded during the test
situation. Other examples include taking a biopsy for a medical diagnosis or extracting
samples of rock using a robot on the surface of another planet, and the subsequent
examination of these entities-to-be-described.

In all these cases, the investigator generates, completely or in part, an entity-to-be-
described that did not pre-exist, in order to qualify it later using operations that are quite
independent of the operation used to generate it. And in certain cases, the operation
used to examine the entity-to-be-described changes it so radically that if several different
examinations are required, a number of ‘replicas’ must be produced, which are then
just assumed to be ‘identical’ to each other. Furthermore, the resulting qualifications
are permanently affected by two quite distinct relativities: relativity to the way the
entity-to-be-described was generated and relativity to the sort of examination carried
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out. Even the concept of relative existence or non-existence arises: the way in which
the entity-to-be-described has been generated may simply exclude certain subsequent
examinations.

These considerations lead to the following observations.

The domain and nature of communicable knowledge in classical thinking are mis-
leadingly reduced. The whole primordial zone of conceptualisation where mind actively
constructs the very first forms of a radically new communicable knowledge, from pure
physical factuality, is so deep-set that it has remained hidden beneath the two basic
building blocks of all current Western languages: namely, subjects and predicates. These
both suggest available pre-existing elements to be described. Furthermore, the primor-
dial, and always fundamentally generative, zone of conceptualisation has even remained
cut off from many classical scientific representations. Notwithstanding the well-known
analyses of Husserl, Poincaré, Einstein, Piaget and many others, which have drawn atten-
tion to the crucial role played by physical operations in the most basic conceptualisation
processes, classical logic and probabilities, as well as the theory of sets, take language
as their starting point and are, again, developed almost exclusively through the use of
language. Physical operations are not considered, and factuality, through the medium
of language, is widely supposed to spontaneously print ‘information’ about the already
existing and real properties of pre-existing ‘objects’ on passively receptive minds. The
active role, when it does arise, is assigned almost exclusively to the exterior reality, and
not to the mind.

However, quantum mechanics, having led us through infra-quantum mechanics to the
identification of the basic, relativised descriptional form D/G,msG, VM/, has revealed
the potentiality of a very deep-set, general and fundamentally operational method of
relativised conceptualisation. Indeed, the descriptional form D/G,msG, VM/ is paradig-
matic. It encapsulates a particular embodiment of an extreme but universal epistemic
situation. Namely, the situation arising when a communicable and consensual representa-
tion is investigated for some non-pre-existing physical entity for which, a priori, it is only
its possible existence that can be conceived and labelled, and which, if it is generated,
emerges in a non-observable state. In such extreme circumstances, we are compelled to
adopt a fundamentally active, constructive approach, which is associated with a complete
decomposition of the global process. This is because in such a situation, all the stages
of the desired description have to be built from pure physical factuality, independently
of each other, with each of them developed in full depth and extent. The strictness of
these constraints has revealed the descriptional form D/G,msG, VM/, which, although
initially only concerned with the case of microstates, has a universal epistemological con-
tent that is so comprehensive and explicit that it strongly suggests the possibility of a
generalisation capable of accommodating any form of description.

So a new target comes into focus, namely, to construct a general, consensual, canonical
method of relativised conceptualisation, which we call MRC for short.
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3.5. Quick overview of the MRC approach

3.5.1. Preliminaries.
It is almost systematically the case that false absolutes generate false problems and
paradoxes that hinder understanding and prevent the development of knowledge. The
history of thought is full of such examples. The specific goal of MRC is

to offer a structured system of norms for conceptualising in a relativised way that
excludes, by construction, any possibility of the emergence of false problems or
paradoxes.

The seed that developed into MRC is the peculiar qualitative form of the primordial
descriptions of microstates that the current author first perceived as lying beneath the
mathematical formalism of fundamental quantum mechanics, and then constructed ex-
plicitly, quite independently of the formalism, in the epistemological/physical discipline
that became infra-quantum mechanics (Mugur Schächter 2011).

The construction of MRC began ab initio, and long before the explicit construction of
infra-quantum mechanics, where the primordial microstate descriptions mentioned above
can be thought about and understood. This general method was developed in a deductive
way, in the sense of everyday (non-formalised) logic. The peculiar form of transferred
descriptions re-emerged within MRC, but only when it was at a rather advanced stage,
and then directly with the status of fully general validity. The epistemological strat-
egy perceived more or less implicitly beneath the mathematical formalism of quantum
mechanics acted as a guide. Then, once constructed, MRC itself guided the explicit
construction of infra-quantum mechanics.

The systematic relativisations introduced successively through the development of de-
scriptions, from the zero-point of conceptualisation, in the form of a basic transferred
description, to a more complete conceptualisation, no matter how complex, provide pro-
tection against any surreptitious insertion of false absolutes. And, remarkably, these
relativisations reproduce, fractal-like, the same recurring basic descriptional form, writ-
ten symbolically as D/G,msG, VM/, at each point along these conceptualisation paths.
So MRC generates hierarchical chains of mutually connected relativised descriptions,
each having the form D/G,msG, VM/.

These chains meet in node-descriptions and form descriptional nets.
In particular, MRC has generated a relativised reconstruction of natural logic, prob-

abilistic conceptualisation and informational conceptualisation, and it has led to a rep-
resentation of ‘complexities’ where the semantic content is fully preserved. It has also
enabled a representation of ‘time’ that is drawn from atemporal elements. For further
details, see Mugur Schächter (2006).

For reasons of space, we will only be able to enumerate the main concepts of MRC
here, without showing the interconnections or giving much in the way of explanations.
However, this will be sufficient for our purposes in plotting a path towards solving Kol-
mogorov’s aporia. Unfortunately, this may give an impression of some arbitrariness since
we will not be able to explain the semantic and logical considerations and requirements
that drove the development of MRC along an inevitable path and unite its elements
into an organic whole. Furthermore, the semantic content will be dispersed through the
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presentation, which hides the flow of its growth during the construction. For a fuller ap-
preciation of how MRC has been developed into a coherent and rigorous whole combining
factual content and rationality, see Mugur Schächter (2006), which is only available in
French, but also Mugur Schächter (2002b), and perhaps even Mugur Schächter (2002a).

3.5.2. Enumeration of basic MRC concepts.

(1) Any MRC description is explicitly relative to a given triad (G,œG, V ) where:

(a) G denotes the generating operation (which may be physical or abstract, or
consist of some combination of physical and abstract operational elements) by
which the entity-to-be-described is made available to be qualified. The specifi-
cation of G is required to include an explicit indication of the domain of reality
RG on which G is applied.

(b) œG denotes the entity-to-be-described and introduced by G. This entity may or
may not be directly perceptible.

(c) We postulate a one-to-one relation G↔ œG between the generating operation
G and the entity-to-be-described œG it introduces.
This relation is not a fact, it is a methodological assumption.
Very careful analyses have shown that this postulate cannot be avoided and
entails major conceptual consequences – see Mugur Schächter (2006, pages 61–
66 and 213–221) and Mugur Schächter (2011).

(d) V denotes the view through which the object-entity is qualified.

(2) The description relative to a given triad (G,œG, V ) is denoted by the symbol

D/G,œG, VM/

where that particular triad is introduced.
(3) By definition, any view V is endowed with the following strictly prescribed structure:

(a) A view V is a finite set of aspect-views Vg where g is an aspect index†:

V =
⋃
g

Vg , g = 1, 2 . . .m,

with m a finite integer.
(b) An aspect-view Vg (an aspect g for short) is a semantic dimension of qualifi-

cation (such as colour or mass) that can carry any finite‡ set of ‘values’ gk(g)§

of the aspect g that we wish to consider. (For instance, for ‘colour’, we could
choose to consider only those ‘values of colour’ indicated by the words ‘red’,

† The symbol g should not be confused with the symbol G for an operation generating an object-
entity œG.

‡ By construction, every counting or numerical character involved in MRC is finite since MRC has been
developed as a strictly effective method. Within MRC, any sort of infinity can only be understood in
terms of the relativised absence of an a priori limitation.

§ We write gk(g) so that we can distinguish between aspect-values of different aspects, and so that we
can assign to the set of value-labels k = 1, 2, . . . cardinals w(g) that depend on g.
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‘yellow’ and ‘green’, and we would associate a reference sample with each of
them.)
The symbol gk(g) functions as a unique index different from g alone, but in
a specific case the indexes g and gk(g) may be replaced by any other pair of
convenient signs.
An aspect-view Vg is defined if and only if we have also defined all the devices
(instruments, pieces of apparatus) and all the material or abstract operations
on which we base the assertion that an examination of a given object-entity
through the aspect-view Vg has led to a particular unique and definite value
gk(g) of g (or none).

(c) A view V is a finite qualification filter.
A given view V is blind with respect to aspects or values of aspects that are
not contained in its initial definition – it simply does not perceive them.

(d) The qualifications of space (E) and time (T ) are achieved through a very par-
ticular type of frame view V (ET ), which can be reduced, if required, to a pure
space-frame view V (E) or a pure time-frame view V (T ).

The features listed above generate the concept of a ‘qualifier’, which is quite unlike
the ‘predicates’ of classical formal logic and the grammars of natural languages.

(4) Given a pair (G,Vg), the two epistemic operators G and Vg may or may not ‘mu-
tually exist’:

(a) If any examination by Vg of the entity-to-be-described œG introduced by the
generator G produces a single well-defined result (gk), then the aspect-value
(gk) of g does exist with respect to the operation G generating an object-
entity œG, that is, there is mutual existence between G and (gk). Hence,
a fortiori, there is also mutual existence between the aspect g itself and the
generating operation G. In this case, the pair (G,Vg) constitutes a one-aspect
epistemic referential. This means that, in this case, if we subject the object-
entity œG introduced by G to an examination by Vg (and thus produce the
operational sequence [G.Vg ]), we might obtain a corresponding ‘description’ of
œG through the qualifier grid introduced by the aspect-view Vg . This only
happens if some invariant result emerges through repetitions of the sequence
[G.Vg ]: this result may be an individually invariant result, some statistical
stability, or a ‘probabilistically invariant’ result (though determining the factual
meaning of ‘probabilistically invariant’ is precisely what we still need to do in
the rest of the current paper).
The mutual existence of a generating operation G of an entity-to-be-described
œG and an aspect-view Vg is the MRC expression of the fact that the aspect g
has emerged by abstraction from a class of entities that œG belongs to.

(b) If, however, an examination by Vg of the entity-to-be-described œG yields no
definite result, then there is ‘mutual inexistence’ between Vg and œG (in other
words, œG does not exist relatively to Vg , and vice versa).
For instance, a song does not exist with respect to the qualifier grid giving the
intensity values of an electrical current recorded by an ammeter, and vice versa.
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In this case, an initial tentative pairing (G,Vg) has to be rejected a posteriori
as being incapable of generating a relative description D/G,œG, VM/, and it is
thus unable to signify from a descriptional point of view.
Mutual inexistence between œG and Vg is the MRC expression of the fact that
the entity œG does not belong to the class of entities that have contributed to
the construction of Vg by a process of abstraction. So:

The concepts of mutual existence and mutual inexistence constitute the
MRC expression of the fact that a qualification can only be applied to
entities that have participated in the genesis of the qualification (individ-
ually or in combination with others).

(c) These considerations can be extended in an obvious way to any pair (G,V )

where

V =
⋃
g

Vg , g = 1, 2 . . .m,

contains a finite number m of aspect-views Vg . In this case, we refer to the
possibility, or not, of an epistemic referential (G,V ).

(5) The space–time-frame principle.
Consider a space–time view denoted by V (ET ). We call it a space–time-frame view
because of the following principle, which only applies to physical object-entities:

Any physical entity-to-be-described exists relatively to at least one aspect-
view Vg that is different from any space–time-frame view V (ET ). However, it
is non-existent with respect to any space–time-frame view V (ET ) considered
alone and separate from any aspect-view Vg that is different from any space–
time aspect ET .

In order to ensure a place to express the space–time-frame principle and its conse-
quences, the view V in any epistemic referential (G,V ) that can generate a descrip-
tion of a physical entity-to-be-described includes, by convention, a space–time-frame
view V (ET ) and at least one aspect-view Vg different from any space–time aspect†.
In particular V (ET ) can be reduced to a space-frame-aspect V (E) exclusively.

(6) Consider a pair (G,Vg) where G and Vg mutually exist. Hence, the pairing (G,Vg)

constitutes an epistemic referential where it is possible to construct the relative
description D/G,œG,Vg/ of the entity-to-be-describe œG produced by G. Then:

(a) If after some number of repetitions N of the sequence [G.Vg ]‡ only one and the
same value (gk) of the aspect G is obtained systematically, the corresponding
relative description D/G,œG,Vg/ is said to be an ‘N -individual ’ one-aspect

† It is possible to construct infinitely many space–time-frame views through the choice of reference axes
and origin, or differential geometric reference structure (such as Riemann geometry), or space and
time units.

‡ In general, after a sequence [G.Vg], the replica of the object-entity œG involved in that sequence is
either changed by the examination using Vg or it is destroyed (for example, it may be absorbed in a
device). So, in general, repetitions of [G.Vg] will also require repetitions of the generation operation
G to create a new replica of œG.
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description (or an ‘individual description’ relative to N repetitions of [G.Vg ],
with N finite). So, within MRC, in order to include the case of entities to be
described that are ‘consumed’ by an examination using Vg , an ‘individual de-
scription’ requires repetitions of the operational sequence [G.Vg ], and is relative
to the number of these repetitions.

(b) If, however, the value (gk) varies, in general, from one realisation of the sequence
[G.Vg ] to another, the corresponding relative description D/G,œG,Vg/ is said
to be a non-individual description. If in this case, using a very large, but finite,
number N ′ of series of N repetitions of [G.Vg ], we can (with respect to some
explicitly defined criteria of ‘precision’) discern some ‘(N,N ′)-stability ’, we will
say that D/G,œG,Vg/ is an (N,N ′)-stable statistical description†‡.

(c) If G and Vg were initially found to mutually exist but no sort of individual
or statistical stability is finally found, we say that a description D/G,œG,Vg/
corresponding to this pair does not ‘exist’, and the epistemic referential (G,Vg)

is discarded a posteriori.
(d) All the preceding statements can be generalised to the case where the view V

we use contains more than one aspect-view Vg . We then have to carry out (in
general, separately) repetitions of all the sequences of operations [G.Vg ] for all
the aspect-views Vg in V .
In that case, the set of all the final qualifications thus obtained will be said to
constitute the resulting description D/G,œG,Vg/ itself: by definition, the triad
(G,œG, V ) appearing in the symbol for the resulting description is not included
in that description, but is just a reminder of its genesis. Moreover, and again
by definition, the description itself ‘exists’ only if some stability is manifested
with respect to all of the aspect-views involved. However, the degree of stability
can vary with the considered aspect-view Vg , so it is relative to Vg . So, like
a description D/G,œG,Vg/, a description D/G,œG, V/ may also be found to
be either an individual relative description or a statistical relative description,
and in the latter case it will be endowed with some (N,N ′)-stabilities.

(e) Now consider a description for which the generating operation G creates an
entity-to-be-described that has never been examined before, and for which the
observable phenomena cannot be directly observed for some reason (for instance,
the chemical structure of a piece of rock sampled by a robot on the moon that
is equipped with some analytical apparatus that can identify chemical structure
and transmit the result to a computer screen in a laboratory on the Earth). De-

† Hence, a ‘statistical’ description in MRC is, by definition, endowed with some (N,N ′)-stability. This
distinguishes it from the standard notion of a ‘statistic’, which does not involve repetitions, or stability
of any sort. This should be borne in mind throughout the following.

‡ An (N,N ′)-statistical description can at most ‘point towards’ a ‘probabilistic’ description
D/G,œG,Vg/ (Mugur Schächter 2006, Proposition π13). However, the specification of the condi-
tions under which a factual ‘probabilistic’ invariant associated with the epistemic referential (G,Vg)
does ‘exist’ and, furthermore, can be identified by some effective procedure is precisely the aim of the
current paper. Until we have identified such a procedure, we shall only refer to statistical descriptions
endowed with (N,N ′)-stability.
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scriptions of this sort form the primordial stratum of human conceptualisations
of physical reality. The qualifications produced by a description from this pri-
mordial stratum consist exclusively of observable marks ‘transferred’ through
‘measurement interactions’ to the registration devices belonging to pieces of
measurement apparatus. A description of this kind is called a basic transferred
description†.

(f) Within a relative description D/G,œG, V/, the ‘generator’ G of the ‘entity-to-
be-described and the view are not fixed entities but are descriptional roles freely
assigned by the observer/conceiver according to his own descriptional aims with
respect to some available physical or conceptual element. So an entity that in
one description performs the role of the view can in another relative description
play the role of the entity-to-be-described or the generating operation. This
sort of freedom, which is characteristic of MRC, is one of the sources of the
general applicability of this method to any process of conceptualisation subject
to the constraint of excluding false absolutes by construction.

(7) Recall that a view V is, by definition, a union of a finite number m of aspect-views
Vg , that is,

V =
⋃
g

Vg , g = 1, 2 . . .m.

Each aspect-view Vg introduces its own semantic g-axis carrying the ‘values’ gk(g),
k = 1, 2, . . . w(g), chosen for consideration on G, where w(g) is the cardinal of the
set of values chosen for consideration on g. So V introduces, by construction, the
abstract representation space defined by the set of its m semantic g-axes. It follows
that:

Any relative description D/G,œG, V/ consists of a finite cloud structure, viz.
a finite ‘points-form’ of (gk)-value-points with g = 1, 2 . . .m, k = 1, 2, . . . w(g),
contained in them-dimensional representation space of the view V introduced
by D/G,œG, V/.

If the object-entity œG is physical in nature, we must include a 4-dimensional dis-
crete space–time view V (ET ) within V. The relative description D/G,œG, V/ then
becomes a finite cloud structure or a ‘form’ of (space–time-(gk)-value)-points with
g = 1, 2 . . .m, k = 1, 2, . . . w(g), and with x, y, z, t some finite space–time grid on
which the units of space and time impose a discrete set of possible space–time val-

† Recall that when a microstate is the entity-to-be-described, the observer can never perceive the en-
tity itself. Although the observer perceives the observable marks that comprise this basic transferred
description on a device endowed with a space–time support, the marks carry no information whatso-
ever about the space–time location of the physical entity that is being qualified. Therefore, the basic
transferred descriptions of microstates fundamentally disobey the space–time-frame principle. This
is tied to the strange and unintelligible character of the descriptions of microstates, which generates
an overwhelming need for some normal space–time representation (a model) that can ‘explain’ the
registered marks: the basic transferred descriptions of microstates form the most extreme example of
the concept of basic transferred descriptions, but this concept can also apply to macroscopic or even
cosmic entities.
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ues. This whole form is contained in the (m + 4)-dimensional representation-space
introduced by the view V .

(8) We can create chains of relativised descriptions that are connected by common
elements in either their respective entities-to-be-described œG (and thus somehow
connected through the relevant operations of generation G) or through the structures
of their views V . There will then be a descriptional hierarchy or ordering along such
a chain. By convention, the first description in the chain is generally assigned the
order 1; the description connected directly to it is then of order 2 with respect
to the first description, and is called a meta-description† with respect to the first
description; the next description is assigned the order 3 and is a meta-description
with respect to the description of order 2 and a meta-meta-description with respect
to the first description in the chain; and so on. So, in general, the order of a
description within a given chain is relative to the process of construction of that
chain.
However, in the case of a chain of descriptions that starts with a basic, first-stratum
transferred description:

The initial basic transferred description determines an absolute‡ starting
point for a particular process of knowledge construction. To show this, we
assign the order 0 to basic transferred descriptions.

(9) The passage from a given description in a chain of descriptions to the next one is
controlled by the methodological ‘principle of separation’, or PS for short. However,
we will need a little preparation before we state this principle.
Each relative description D/G,œG, V/ is achieved within an epistemic referential
(G,V ) where G (in consequence of the methodological assumption of a one-to-one
relation G ↔ œG) is tied to a single entity-to-be-described œG and the view V

consists of a given finite set of aspect-views Vg , each of which carries a finite set of
aspect-values (gk). Furthermore, the relative description D/G,œG, V/ is achieved
through some finite number of realisations of sequences [G.Vg ]. So a relative de-
scription D/G,œG, V/ is, by construction, a finite ‘cell of conceptualisation’. If all
the aspect-views of the global view V have been taken into account, each with all
its values gk, then, after the realisation of some arbitrarily large but finite number
of sequences [G.Vg ] performed for all the aspect-views Vg in V , if we find a de-
scriptional invariant, then the description D/G,œG, V/ has been achieved and the
descriptional resources of the epistemic referential (G,V ) will have been completely
exhausted. If, however, we want to obtain some new knowledge that is connected
with D/G,œG, V/, but has not been produced within D/G,œG, V/, we will need
to introduce another convenient epistemic referential (G′, V ′) that is different from
(G,V ) because either G′ 6= G or V ′ 6= V , or both, and then construct the new

† In logic, the prefix ‘meta’ indicates an embedding language, so it is thought of as placed ‘under’ the
object language as a support. Here, however, we use ‘meta’ specifically to mean ‘after’-and-connected-
with.

‡ This is not a false absolute since it is a factual datum, and is thus allowed by MRC (in the same way
as it allows definitions, principles and conventions that are absolute within the method).
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relative description D/G′,œG, V ′/ inside (G′, V ′), which will be connected with
D/G,œG, V/, but will correspond to the new descriptional aim.

The principle of separation (PS) means that a new description D/G′,œG, V ′/

in a chain is always achieved by a process that is explicitly and entirely sep-
arate from the descriptional process that led to D/G,œG, V/.

In this way, we can systematically avoid any uncontrolled merging or confusion
between the aims and origins of two distinct but connected relative descriptions.

(10) When a chain starts with a basic transferred description of order 0, it is often the
case that this initial transferred description of order 0 taken as a whole plays the role
of the new entity-to-be-described for the immediately following description, which
will be of order 1, so that it can be qualified by a certain peculiar sort of view that
assigns it ‘values’ of an ‘aspect’ with a definite (and usually connected) space–time
support. In this way, the unintelligible transferred description of order 0 becomes
intelligible in the sense that it conforms with the space–time-frame principle – see
point (5) earlier in this section.
We call a view that generates such conformity an intrinsically modelling view. The
final result of such an explanatory description of order l can then be detached from
its origin. This leaves us with a model of the basic, transferred description with
order 0 in the chain being considered. Later in the same chain, we can construct
a meta-description of higher order that introduces the classical concepts of ‘cause’
and ‘locality’, and we thus enter the domain of validity of ‘determinism’ in the sense
of classical physics.
In this way, there is in MRC a divide within the pool of relativised descriptions
achieved at any given time between the very first relative descriptions in this pool
(which are basic, transferred descriptions with absolute order 0), which form a pri-
mordial stratum of conceptualisation and all the others. The classical models corre-
sponding to the transferred descriptions from the primordial stratum have increas-
ingly complex forms through their inclusion in nets of more complex conceptual
structures and constitute an evolving classical ‘volume’ of conceptualisation of in-
definitely growing thickness.
In this way, MRC incorporates the famous ‘quantum–classical cut’, and explains it
as a special case of the following universal transition concept:

(transferred descriptions) ⇒ (classical descriptions).

Note that we write ‘transition’ here rather than ‘cut’ because MRC gives a detailed
definition of the connection between a basic transferred description and the models
that ‘explain’ it.

(11) According to MRC, any knowledge that can be communicated in a non-restricted
way† is a description. In other words, descriptions are the only unrestrictedly com-

† For example, the action of ‘pointing towards something’ is restricted because it requires a real or
virtual co-presence within some delimited space–time domain. Mimes, emotional sounds and so on
also require similar restrictions in some way.
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municable knowledge. ‘Facts’ that are exterior to any psyche or psychic facts (emo-
tions, desires and so on) that are not manifested through some more or less consen-
sually perceptible expression (verbal or of some other constitution) are not ‘descrip-
tions’, they are not unrestrictedly communicable knowledge. The statement ‘I know
this house’ is illusory, and can only be made through a lack of awareness, or perhaps
as a sort of shorthand. The only rigorous way of stating what is presumably meant
is to say ‘I know descriptions of this house’.

(12) Finally, but crucially in the present context:

When the concept of probability is reconstructed inside MRC, the events,
whether elementary or not, acquire the conceptual status of relativised de-
scriptions.

The status of a probabilistic event in MRC is not that of an entity-to-be-described
œG but of a relative description of some entity-to-be-described œG involved in the
situation, and the entity œG itself must be clearly distinguished from any of its
individual descriptions, whether realised or potential (Mugur Schächter 2006). If
the entity remains unchanged, its descriptions can be varied freely and indefinitely
through the use of convenient views. This, as will become clear shortly, is an essential
step forward as it provides a considerable increase in expressive and discriminatory
power and avoids quite a lot of dead-ends.

This concludes our enumeration of the main concepts of the kernel of MRC.

4. A key example – games with a chopped up painting

The discussion throughout this section will be confined to the classical level of concep-
tualisation, so the entities-to-be-described will be ‘objects’ in the classical sense† (dice,
apparatus, tables, vehicles, roads and so on).

4.1. Introduction

In this section we will consider a sequence of examples to gain familiarity with the use
of MRC. However, in doing so, and by going through a series of small and obvious steps,
it will also become clear how, in any given empirical probabilistic situation, a general
effective procedure might be constructed that would enable us to identify a relativised
factual probability law to be associated with that situation.

4.1.1. Relativised partitioning and notation
Consider a square painting P that represents, for instance, a landscape, and for which
we have any desired number of replicas.

Now consider a spatial grid of 100 squares σ that fits exactly over the painting P . The
location of each square σ is identified by two space coordinates (xk, yh) where xk is an
element of a set of 10 successive equidistant coordinates {xk}, k = 1, 2 . . . 10, marked on

† In other words, modelling constructs in the sense of Husserl.
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a horizontal space axis ox at the lower edge of the grid and yh is an element of a set of 10

successive equidistant coordinates {yh}, h = 1, 2 . . . 10, marked on a vertical space axis
oy at the left-hand edge of the grid. When the grid is placed over the painting P , the
label (x1, y1) indicates the square at the bottom left corner of P ; the bottom left corner
of this square is itself the origin 0 of the plane Cartesian reference system xoy attached
to the grid placed over P . So the pair (x10, y10) indicates the square at the top right
corner of P .

Consider an epistemic referential (GP , V ) where the generator GP of the entity-to-
be-described is a ‘selector’ that selects the painting P to be described and V is a view
consisting of three aspect-views defined as follows:

— A frame-aspect-view V (El) of spatial location (E: space; l: location) for which the
possible values are the 100 pairs of spatial coordinates (xk, yh), k = 1, 2, . . . 10, h =

1, 2, . . . 10.
— A colour aspect-view Vc endowed with a given set of colour values (c: colour).
— A two-dimensional frame-aspect-view V (E) endowed with a very large number of

length-values (this amounts to the introduction of a very small unit of length)†.

So we have

V ≡ V (El) ∪ V (E) ∪Vc.

In this case, we can combine the aspect-views V (E) and Vc into a single view of colour-
forms Vcφ ≡ V (E) ∪ Vc. The frame-aspect-view V (E) is endowed with a very small
unit of length, so, if the colour aspect-view Vc is sufficiently richly endowed with colour
values, the view Vcφ ≡ V (E) ∪ Vc will perceive patterns of colour that will reproduce
as ‘satisfactorily’ as desired those perceived by a normal human eye.

With these definitions and this notation, the description of the painting P achieved
within the epistemic referential (GP , V ) is written as

D/GP , P, V (El) ∪Vcφ/.

We will now consider a ‘local’ epistemic referential (G(σ), V ) where G(σ) selects an
entity-to-be-described consisting of only one of the squares σ demarcated by the super-
imposed grid, while the view V is the same as in the referential (GP , V ). Hence, a relative
description corresponding to (G(σ), V ) can be denoted by the symbol

D/G(σ), σ, V (El) ∪Vcφ/

and it consists of some ‘colour-form’ covering the selected square σ, for which the global
location is indicated by its ‘value’ xk, yh of spatial location detected by the aspect-view
V (El).

If we now suppress the global spatial location defined by the frame-aspect-view V (El)

† Note that V (E) does not include the aspect of the square’s global spatial location that can be perceived
using V (El): here, the only role played by V (E) is to satisfy the general space–time-frame principle,
which says that in order to examine a physical entity, there must be at least one aspect-view that
exists with respect to that entity together with a space- and/or time-frame view – see point (5) in
Section 3.5.2.
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in the local relative description

D/G(σ), σ, V (El) ∪Vcφ/

of a square σ, we are left with a local description

D/G(σ), σ,Vcφ/

of σ that is achieved within the referential (G(σ),Vcφ). In this description, any direct
indication of the spatial location of σ has been filtered out. Nevertheless, there still
remain some indications of the location of the selected square σ in P , namely, the indirect
indications contained in its colour-form since this form reaches the borders of the square
σ, which allows us to discern a continuity or discontinuity with respect to the patterns of
colour reaching the border of some other square σ in P . This leads to a sort of ‘attraction
by semantic continuity’ between the border of one square and the border of the square
next to it and a sort of ‘repulsion by semantic discontinuity’ between non-matching
borders.

This means that if we cut up a replica of the painting P into the 100 squares
σ defined by the superimposed grid, we can use the resulting pieces as a jigsaw
puzzle (albeit an unusual one that has non-interlocking pieces that are all the
same size and shape).

Now suppose we progressively impoverish the set of colour values carried by the aspect-
view of colour Vc in the view of colour-forms Vcφ ≡ Vc ∪ V (E) by using smaller sets of
colour values j = 1, 2 . . . q. This amounts to assuming that the colour-forms view

Vcφ ≡ Vc ∪ V (E)

becomes blind with respect to many of the colours composed into the ‘forms’ perceived
in the local descriptions

D/G(σ), σ, V (El) ∪Vcφ/

on P . Hence, we move progressively to a view V (E) ∪ Vcs that only perceives areas
covered by a single approximately uniform colour-shade denoted cs. We can denote a
global version of this new, impoverished view as, say, a view of approximate colours

Vac ≡ V (E) ∪Vcs.

So how will the local description

D/Gσ, σ,Vac/

of a given individual square σ appear to an observer using the view Vac? The answer
will obviously depend on certain relationships, which we will have to specify.

So we suppose that the global dimensions of the picture P , the distance between two
successive values of the xk or yh coordinates, and the spatial distribution of colours in P
are such that:

(a) The spatial extension of a square σ is small enough to ‘exist’ (in the sense of
point (4a) in Section 3.5.2) with respect to a single approximate-colour value j.
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Hence, the relative description

D/Gσ, σ,Vac/

of any given square σ using the uniform approximate-colour view Vac consists of a
single uniform approximate-colour ‘value’ j, which no longer forms any outline on
the surface of σ that is distinct from the square outline of σ itself. So we now have

{D/G(σ), σ,Vac/} ≡ {D} ≡ {j}, j = 1, 2, . . . q.

(b) Any given partial description Dj ≡ j is realised within P on a number of squares
σ that is much greater than 1 and these squares are, in general, at quite different
locations within P . Hence, by construction, the cardinal q of the set of mutually
different relative descriptions

{Dj} ≡ {j}, j = 1, 2 . . . q,

is much less than 100.

Under these conditions, a relative description {Dj} ≡ {j}, j = 1, 2 . . . q, instead of
allowing us to say

‘on this square I perceive that form-value’

as the description

D/G(σ), σ, V (El) ∪Vcφ/

did, will only allow us to say

‘on this square I perceive this uniform shade of red, while on that square I perceive
that uniform shade of blue, and so on’.

The colour-form that, through the colour-forms view Vcφ ≡ Vc ∪ V (E), appeared to
cover a square σ has now been filtered out in its turn, and within the descriptions

D/G(σ), σ,Vac/ ,

we have lost the ability to perceive the pattern of colours. Therefore, the descriptions
from the set {Dj} ≡ {j}, j = 1, 2 . . . q have now been cut off from the global description

D/GP , P, V (El) ∪Vcφ/

of the painting P . We can no longer perceive any ‘semantic attractions’ or ‘semantic
repulsions’ at the borders of the squares.

Therefore, we will not be able to use the 100 squares σ as a jigsaw.

So, we now have three distinct views for describing a square σ:

— the frame-aspect-view V (El) giving the spatial location of a square;
— the aspect-view Vcφ giving the colour-form; and
— the aspect-view Vac giving the uniform approximate-colour.

Recall that we have any desired number of replicas of P at our disposal. We will now
define a sequence of ‘games’ with squares σ from chopped up replicas of P that will lead
us to the result mentioned at the beginning of Section 4.
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4.1.2. Game illustrating the power of reconstruction contained in a space (or a space–
time) order
For our first game, we will cut up a single replica of P into squares σ, mix them up
and put them into a bag. We will then take one square σ at a time from the bag and
examine it using the frame-aspect-view V (El) of spatial location alone. By construction,
this gives us a description for each square consisting purely of the square’s coordinates
xk, yh, but this is enough for us to place the square in its place on the reference grid
given by the system of axes xoy. Since a view acts as a filter, we have been able to do
this without taking into account the colour-form carried by the square, or the uniform
approximate-colour j defined on it by the view Vac. Nevertheless, after we have taken
exactly 100 squares from the bag, the complete painting P will have been reconstructed.
Although the order in which the squares are removed from the bag is random, each step
in reconstructing the global painting P is accomplished in a way marked by certainty,
and the global process is finite. Hence, the spatial frame reference grid, taken by itself,
possesses a topological organising power that is independent of the ‘semantic content’ of
the squares.

The above remarks can be extended in an obvious way to the case of an ‘evolving
picture’ that is broken up into space–time cubes.

4.1.3. Jigsaw made from a single replica of P
In this game, we will again cut up a single replica of P into 100 squares, mix them up
and put them into a bag. We will also again remove the squares one at a time from the
bag, but this time, we will use the colour-form view Vcφ exclusively. So each square will
be perceived through its relative description

D/G(σ), σ,Vcφ/.

The space location label (xk, yh) and the uniform approximate-colour label j will be
ignored – they are filtered out.

Under these conditions, the global painting P will have again been reconstructed after
we have taken exactly 100 squares from the bag. However, in general, in order to find
the correct place for a given square, we will have had to use a lot of trial and error to
find where to put the square, or may even have had to put a square aside for a while
in order to take out and place other squares to help us identify the correct place for
it. Nevertheless, guided by the structure of the patterns of colour it carries, we will
eventually be able to identify where it goes. And we will have used the structure of
the patterns of colour on each square mainly through its content near the borders of the
square, where it determines a sort of neighbourhood coherence with the patterns of colour
near one of the borders of one of the other squares through the ‘attraction by semantic
continuity’ and ‘repulsion by semantic discontinuity’ mentioned earlier.

In this game, the content-independent topological organising power of the space coor-
dinates has been filtered out and replaced by these ‘attractions by semantic continuity’
and ‘repulsions by semantic discontinuity’. And again, everything is finite, and, notwith-
standing the presence of trials and errors and the randomness in the order of taking the
squares out of the bag, there is nothing random in the reconstruction process.
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This game, like the game in the previous section, can be extended in an obvious way
to the case of an ‘evolving picture’ broken up into space–time cubes. But this time
the space–time labels are ignored, and we need to use the attractions by continuity and
repulsions by discontinuity along the borders entailed by some other descriptional content
instead. (For example, during a criminal investigation, the detective tries, in essence, to
complete a generalised space–time jigsaw puzzle.)

4.1.4. Jigsaw with several replicas of the painting P
In this game, we will use 1, 000 replicas of the chopped-up painting P and proceed in
the same way as we did for a single replica in the previous section. We mix together all
100, 000 squares we now have and put them in a large bag. We then remove the squares
one at a time, and, ignoring the space and approximate-colour labels printed on it, search
for an appropriate place to put each of them on one of the 1, 000 space–time grids placed
in front of us.

What will happen? After we have removed 100, 000 squares from the bag, we shall
certainly have entirely reconstructed all 1, 000 replicas of the painting P . However, this
will only have been achieved after quite a lot of trials and errors. And we will not have
completed each of the replicas separately in succession, we will have completed all the
replicas together, which involves jumping from one replica to another to place pieces.
In general, it is only at the end of the process that all 1, 000 replicas will have become
completely separate from one another.

In principle, no essentially new features would be introduced by using 10N replicas,
where N is some finite whole number, instead of 1, 000 replicas. And, as in the previous
games, we can also extend this game to a set of ‘evolving paintings’ in an obvious way.
And again, everything is finite in all these cases, and, notwithstanding the presence of
trials and errors and the randomness in the order of taking the squares out of the bag,
there is, once more, nothing random in the reconstruction process for the multiple replicas
of P .

The only randomness involved in a jigsaw puzzle, no matter how big or complex it
may be, is in the order we take the squares from the bag.

The attractions by semantic continuity and the repulsions by violation of seman-
tic continuity along the borders of the squares exclude all randomness from the
process of reconstructing any number of replicas of the global entity that has been
partitioned.

4.1.5. Probability game with one replica of the painting P
We will now consider a game showing how randomness can appear within the reconstruc-
tion process itself.

In this game we will follow a similar procedure to that used in the previous games,
except that when we have finished with each piece, we will put it back in the bag rather
than place it in the reconstruction. Although this may, at first sight, seem to be an
insignificant change to the procedure, the effect will be that all the characteristics of
probabilistic randomness will come flooding in, and we will be faced with: unending
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sequences of events; the corresponding statistical relative frequencies; probabilistically
estimated randomness in the evolution of these relative frequencies; and probabilistically
estimated convergence. Our apparently insignificant change will turn out to have been a
radical conceptual jump.

Our new game will use a single replica of the painting P cut into squares, but this
time, instead of using them as a jigsaw, we will play the following ‘probabilistic game’:

(1) As in the earlier games, the first step is to mix up the squares and put them in a
bag.

(2) Again as in the earlier games, take one square out of the bag.
(3) Use the uniform approximate colour view Vac (and only that view) to determine and

record the value of the index j appearing in the corresponding relative description

Dj, j = 1, 2, . . . q.

Since we do not use the colour-form aspect Vcφ (or the spatial location frame-
aspect V (El)), a fortiori, the semantic continuities on the borders of the square
remain inactive.

(4) Unlike in the earlier games, drop the square back into the bag.
(5) Shuffle the squares in the bag.
(6) Repeat the same procedure from Step (2) an arbitrarily large number of times.

The changes to the procedure mean that this is now a standard ‘probabilistic situation’.
In this game, unlike the earlier ones, just before we take each square from the bag, a
certain set of invariant conditions is reconstituted, and this set defines, in the sense of
the usual factual probabilistic language, a ‘reproducible procedure’ or ‘experiment’ and
a stable set of events {j}, j = 1, 2, . . . q. Since, according to MRC, any communicable
knowledge is a description (see point (11) in Section 3.5.2), we can explicitly rewrite this
set of ‘events’ as the set of relative descriptions

{j} ≡ {Dj}, j = 1, 2, . . . q.

So, can we predict what will happen in these new conditions?
If the number of times we take a square from the bag and replace it is very much

bigger than the number q of elements in U (that is, the number of approximate colours),
we can make the following rather obvious remarks:

(R1) Since the initial contents of the bag are reconstituted each time we remove and
replace a square, all the descriptional values j = 1, 2 . . . q possible when we are
about to take out a square will be equally possible when we are about to take out
the next square. Unlike the earlier games, no possibility is irreversibly ‘consumed’
when we take a square from the bag (since we put it back again). This entails the
stability of the global factual situation.

(R2) Correlatively, the contents of the bag are never exhausted. There is no longer a
natural conclusion to the sequence of results obtained by repetition of the taking
out and replacing procedure. The sequence has arbitrary length, and can grow
‘towards infinity’. This is the source of any potential non-effectiveness.
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We can also ask two questions, which have less obvious answers:

(Q1) If we continue the game indefinitely, will we observe all q possible values of the
index j of uniform approximate colour?

(Q1) If we continue the game indefinitely, how will the relative frequency n(j)/N of the
outcomes of a given value j of the index of uniform approximate colour evolve as
N increases?

However, despite the fact that we have said the answers are not obvious, after short
reflection, almost all people skilled in current probabilistic thinking will give the following
answers to these questions:

(A1) It is nearly certain that if the number of repetitions N is large enough, then all q
values of the index j of uniform approximate colour will show up.

(A2) If the number of repetitionsN is increased without a priori limitation, then, sooner
or later, but nearly certainly, and for any j, the relative frequency n(j)/N of the
outcomes of a given value j of the index of uniform approximate colour will exhibit
a certain convergence. Specifically, the value of the relative frequency n(j)/N will
tend to reproduce the value of the ratio nP (j)/100, where nP (j) is the number of
squares in the cut-up replica of the painting P that carry the value j of uniform
approximate colour, and 100 is the total number of squares that the replica of P
was cut up into.

But why should there be any convergence? And why should it be precisely towards the
ratio nP (j)/100 defined on P? And why, in both formulations (A1) and (A2), is it ‘nearly
certain’ and not ‘completely certain’? To answer these questions, we need to look into
the minds of those giving the answers (A1) and (A2), where we will find, more or less
explicitly, some equivalent of the following reasoning:

Reasoning for answer (A1):
Since each time we take a square out of the bag and record the j-value for it, we
then return the square to the bag, and since this process can be repeated indefinitely,
there is, given a sequence of arbitrarily long length N , no a priori basis for strictly
excluding:

— any specific individual possible outcome j = 1, 2, . . . q;
— any specific individual sequence of j-values;
— any specific individual global statistical distribution of relative frequencies

n(j)/N, j = 1, 2, . . . q,

with ∑
j

n(j)/N = 1,

that can be constructed for a given N , with j-values belonging to the universe
{Dj}, j = 1, 2, . . . q, of relative descriptions.

Given the indefinite repeatability we have assumed here, any outcome of any feature
that cannot be a priori excluded on the basis of some specified reason has to be a
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priori admitted as possible. These two formulations have the same significance, so
any distinction between them would amount to a contradiction. For instance, nothing
allows us to a priori strictly exclude the maximally unbalanced statistical distribution
n(j′)/N = 1 for some given N and j′, that is:

n(j′) = N

n(j) = 0 for any j 6= j′

(for example, with j′ = 2, the sequence would be 2222222222 . . . of length N). Indeed,
if it is possible to get a square carrying j = 2 as the first square taken from the bag,
since that square is put back in the bag before the second square is taken out, the
same possibility also holds for the second square, and so on, indefinitely. However,
nothing excludes getting a square with j 6= 2 either. These considerations lead us to
the answer (A1).

Reasoning for answer (A2):
We know that:

— the number of squares in the bag and the number of possible approximate-colour
values j are both finite;

— all the squares come from the cut-up replica of the complete painting P ; and
— all the squares from the replica are placed in the bag.

Under these conditions, before each square is taken out of the bag, it is natural for
us to have a greater expectation of finding on that square a j-value (the approximate
colour) that is repeated, say, on 10 different squares of the painting P , than a j-value
that is only repeated on 2 different squares of P .
The result we get after taking a square out of the bag has no effect on the reasonable-
ness of what we expected before taking it out – we must avoid any confusion between
a priori and a posteriori as well as between what is ‘possible’ and what is ‘probable’.
So, since we know that each time before we take a square out of the bag it contains
exclusively the 100 squares that make up one replica of the painting P , it is natural
for us to expect a priori that in a sufficiently long sequence of j-values, each possible
j-value will be obtained a number of times that is approximately proportional to the
number of squares on which this j-value is realised in the complete painting P . It
is also natural to expect that as the number or repetitions N increases, the relative
frequency n(j)/N will be found to tend to converge, for each given j-value, towards
the ratio

nP (j)/100

where nP (j) is the number of squares in one complete replica of the painting P that
give that j-value. More generally,

nP (j)/nPT

where nPT is the total number of squares, which is 100 in this example.
Given the conditions, it is impossible to justify any other assumption, while this
assumption, in a certain sense, simply follows.
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Indeed, the global form of a single replica of P is contained in the bag, even though it
has been cut up. So, in the long term, it must manifest itself through any view that
is not entirely blind with respect to it. Now, under the conditions of our probability
game, the only active view is the approximate colour view Vac with the possible values
j = 1, 2, . . . q, and this view is not entirely blind with respect to the form of P . More-
over, under the conditions of our probability game, the unique possible manifestation
of the global colour-form aspect of P we can get through the approximate-colour view
Vac consists of a set of relative frequencies

{n(j)/N}, j = 1, 2, . . . q,

which reproduces the set of ratios

{nP (j)/nPT }, j = 1, 2, . . . q

from the global colour-form aspect of P . So, by default, such a set of relative fre-
quencies is what has to be expected, and this amounts to the convergence mentioned
in answer (A2).
However, this can only be expected with near certainty, not complete certainty. This
is entailed by the conditions we have imposed: these conditions simply exclude the
assertion that each relative frequency n(j)/N will certainly converge towards the
corresponding ratio

nP (j)/nPT = nP (j)/100,

and thus, all the more, the assertion that it will strictly reproduce this ratio.
Indeed, we have already pointed out that any sequence of N results j is possible, even
a sequence kkkkkkkkk . . . of N results with j = k. However, we are reasoning within
the abstract framework of the concept of probability†, so there is a normalisation
condition for the probabilities on a universe of events of any sort: the sum of all the
probabilities assigned to the events from the universe being considered must be equal
to 1. So, consider a sequence σω(N, j) of N results j, where ω is an index of some
statistical structure

{n(j)/N}, j = 1, 2 . . . q

and N is any whole number. For any give N , there exists a corresponding finite set

{σω(N, j)}, j = 1, 2, . . . q, ω = 1, 2, . . . ν,

of N mutually distinct statistical structures that can be constructed with N . These
constitute a universe of events (meta-events, with respect to the events from {j}, j =

1, 2, . . . q). And the probabilities

p(σω(N, j)), ω = 1, 2, . . . ν,

† This statement does not introduce any circularity here since it is only the concept of a factual probabil-
ity law that is still undefined; we do accept the abstract mathematical probabilistic syntax introduced
by Kolmogorov, at least as an initial basis.
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assigned to these new (meta-)events are also subject to the normalisation condition∑
ω

p(σω(N, j)) = 1.

So any sequence σω(N, j) is possible a priori, and thus ‘consumes’ a certain ‘quantity
of probability’ within this normalisation condition. This forbids us from assigning a
priori complete certainty (that is, with probability equal to 1) to any specific sequence
σω(N, j). If we did assign complete certainty to one of the sequences σω(N, j), then,
contrary to the initial assumption that any sequence is a priori possible, we would
a priori exclude the possibility of any of the other sequences {σω(N, j)} occurring.
This would be a contradiction. So a certain and strict convergence towards all the
ratios nP (j)/100 is excluded by the rules of our probabilistic game.
However, nothing in the rules of the probability game prevents us from holding the in-
tuitive notion that with sufficiently large numbers N , each relative frequency n(j)/N

would, nearly certainly, come arbitrarily close to the corresponding ratio

nP (j)/nPT = nP (j)/100.

This is precisely the answer (A2) given for question (Q2).

So we have now made the reasoning and motivation underlying the answers (A1) and
(A2) explicit. However, as we said earlier, this is not the reasoning and motivation in any
mind, but the reasoning and motivation in the minds of people skilled in current proba-
bilistic thinking, and those minds are conditioned, precisely, by a deep understanding of
the law of large numbers. So we will now compare our discussion of the special case of
our probability game with the general law of large numbers.

4.2. An effective definition of the factual probability law in the case of the ‘probability
game’ with the painting P

At first sight, the reasoning and motivation we described in the previous section for the
answers to questions (Q1) and (Q2) may seem trivial, but, in fact, they lead us to a
conclusion that is far from trivial. Indeed, the answers (A1) and (A2) will finally provide
us, for the particular case of the probability game with the picture P , with an effective
definition, founded on ‘real facts’, of the elusive concept of a factual probability law. And
we will arrive at this definition by reference to the law of large numbers:

∀j.∀(ε, δ).∃N0.∀N. (N ≥ N0)⇒ P [(|n(ej)/N − p(ej)|) ≤ ε] ≥ (1− δ). (3)

Indeed, by simply identifying and substituting terms, we will be able to see that the
expression (3) of the law of large numbers can be viewed as a rigorous mathematical trans-
lation of precisely the partially intuitive and partially ‘reasoned’ answers (A1) and (A2).
So we set

ej ≡ Dj
{p(Dj)} ≡ {np(j)/nPT } ≡ {nP (j)/100}

(4)
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for j = 1, 2, . . . q, in (3) to give

∀j.∀(ε, δ).∃N0.∀N. (N ≥ N0)⇒ P [(|n(Dj/N)− nP (j)/100|) ≤ ε] ≥ (1− δ).

where the numbers {nP (j)/100}, j = 1, 2, . . . q, satisfy all the conditions required for a
probability law (cf. the footnote on Page 6), whether formal or factual. For example,
they are real positive numbers (here they are rational numbers) and they obey the
normalisation condition ∑

j

nP (j)/100 = 1.

So, in the case of the probability game with the picture P , the set of ratios

{nP (j)/nPT } ≡ nP (j)/100}, j = 1, 2 . . . q,

defines on the set of events {Dj}, j = 1, 2, . . . q, the quite definite and effective factual
probability law

{pF (Dj)} ≡ {nP (j)/nPT } ≡ {nP /100}, j = 1, 2, . . . q, F: factual (5)

It is striking that the definition (5) amounts to our using the intuitive, primitive
concept of the probability of an ‘outcome’ as

[the number of ‘favourable cases’]
[the total number of possible ‘cases’]

.

Indeed:

The weak law of large numbers implies this intuitive definition!

But the law of large numbers is non-effective and absolute, and these are both forbidden
in MRC. However, the construction that led us to the definition (5) was developed using
the descriptional relativities forced on us by the discrete and finite treatment required
by MRC. And despite this, no incompatibility has emerged: we shall have to decipher
this remarkable disagreement/agreement relation between the law of large numbers and
MRC.

4.3. On the significance in this case of the mere ‘existence’ of a factual probability
distribution

The belief in the existence of a factual probability law in the answers (A1) and (A2) was
founded on the fact that before each square was taken out of the bag, it contained a
complete cut-up replica of the painting P :

The systematically repeated presence of a cut-up complete replica at the same
point (before taking a square from the bag) in the sequence of random operations
(taking a square from the bag) suggests that this presence had to manifest itself
in some way, if possible. And in the circumstances under consideration, the only
possible way it could manifest itself was in the emergence of a probability law.

If we had started directly with the probabilistic game in Section 4.1.5, without consid-
ering the earlier games in Sections 4.1.2–4.1.4, the significance of this remark would have
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remained hidden. The presence of a cut-up whole inside the bag would have manifested
itself only in cryptic terms: specifically, in terms of the values j of the impoverished
aspect-view Vac, which filter out any trace of the local patterns of colour initially carried
by each piece of the picture, thus producing the set of events {Dj}, j = 1, 2, . . . q. Any
observable hint of participation in a more complete structure endowed with any inherent
global ‘significance’ going beyond the descriptions Dj ≡ j has vanished if all we consider
is this set of events. But, thanks to the explicit successive relativisations carried out
through the use of MRC, the vague intuitive definition of the probability of an outcome
j has acquired a traceable connection to the semantic notion of the ‘complete form’ of a
painting P involved in the random phenomenon being considered.

We have released the direct perception of random outcomes from the bonds impris-
oning it exclusively within the probabilistic level of conceptualisation by building
awareness of an essential connection to another, higher level of conceptualisation.
And on this higher level, we can finally and clearly perceive a precise meaning to
the statement that ‘a probability law must exist’.

4.4. Conclusion for Section 4

In the probability game we have considered in this section, knowledge of the colour-form
carried by the complete replica of the painting P , the way we cut it up and the view
defined on the pieces determined in effective terms, both, the significance to be assigned
to the simple assertion of the existence of a factual probability law acting on the set of
events {Dj}, j = 1, 2, . . . q, and the numerical structure of this factual probability law.

Furthermore, the way these emerged makes the weak law of large numbers intelligible
and reveals the source (in this case) of its non-effective character, namely, the impossibility
of making relativised use of the finiteness of the whole (the complete painting) entailing
the probability law

{p(ei)} ≡ {pF (Dj)} ≡ {nP (j)/100}, j = 1, 2, . . . q,

because we do not know what this ‘whole’ is, or even that it exists. This is because we
have been trained to rush into absolute formulations that lead us into a dead-end and
leave us there indefinitely. Given such ignorance of the ‘whole’, we have no alternative
but to make use of:

— An indefinitely increasing integer N that counts the total number of achieved reali-
sations of the relevant experiment and allows us to compare the relative frequencies
of the various outcomes.

— A non-effective definition of the concept of probability in terms of the mathematical
virtual limit of an infinite sequence of values of the relative frequency registered for
the outcomes of any given possible event.

In order to compensate for the drawbacks resulting from our ignorance with respect
to the ‘whole’ and the absolute forms of expression we are trapped in, we have to offer
conceptual room for any possible sequence of relative frequencies, and this does indeed
require virtual limits and real numbers to represent a factual probability: when we ignore
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why and how the observed facts emerge, we are forced to over-represent in order to ensure
that nothing essential escapes the representation. All the various ‘laws of large numbers’,
weak or strong, involve semantically empty mathematical conditions of convergence and
integrability that, in particular, also cover the possibility of a global form placed on a
meta-level, from which the observed random phenomenon issue in some way†. But they
do not explicitly identify such a meta-form, and in consequence of this, they introduce
descriptional looseness and non-effectiveness.

While a definition founded on knowledge of a definite delimited whole divided into a
finite number of pieces can be achieved in terms of rational numbers, and these numbers
can be found by just counting the pieces making up the whole, provided the pieces are
clearly distinguished by convenient relativisations.

So we now have many suggestions for how to proceed, but we are also left with an
obvious question. In the case of the probabilistic game with the picture P , we simulated
ignorance of the complete picture that was, in fact, both pre-existing and known. But
then, in order to identify the definition (5) of the factual probability law involved, we
made use of it as a reference. Now, we need to ask how far the conclusions we reached
on this basis can be explicitly generalised to the case most commonly found in practice,
where the pre-existence of an integrated meta-form corresponding to a given random
phenomenon is not ensured, and for which, a fortiori, no knowledge of such a form is
available.

5. Construction of the factual effective probability law tied to any given
random phenomenon

5.1. Karl Popper’s propensity interpretation of probabilities

Up until now, Popper had been the only thinker to have proposed a definite meaning
(an interpretation) for the assertion of the existence of a factual probability law, which
he did through his famous ‘propensity interpretation’:

‘Take for example an ordinary symmetrical pin board, so constructed that if we
let a number of little balls roll down, they will (ideally) form a normal distribu-
tion curve. This curve will represent the probability distribution for each single
experiment, with each single ball, of reaching a possible resting place.
Now let us “kick” this board; say, by slightly lifting its left side. Then we also kick
the propensities – the probability distribution – ...

† The French Wikipedia article on the law of large numbers says, in French:

‘Pour Andreï Kolmogorov, la valeur épistémologique de la théorie des probabilités est fondée sur le
fait que les phénomènes aléatoires engendrent à grande échelle une régularité stricte, où l’aléatoire a,
d’une certaine façon, disparu.’ (http://fr.wikipedia.org/wiki/Loi_des_grands_nombres)

This remark shows that Kolmogorov himself perceived that the definitions of a factual probability law
and of the abstract concept of a probability measure involve, on a meta-level of conceptualisation, a
‘globality’ or a ‘unique’ entity that, on that level, behaves as a coherent whole (this might be connected
with mathematical conditions of integrability).
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Or let us, instead, remove one pin. This will alter the probability for every single
experiment with every single ball, whether or not the ball actually comes near the
place from which we removed the pin. ...

... we may ask: “How can the ball ‘know’ that a pin has been removed if it never
comes near the place?” The answer is: the ball does not “know”; but the board as
a whole “knows”, and changes the probability distribution, or the propensity, for
every ball; a fact that can be tested by statistical tests.’ (Popper 1967)

According to this interpretation, the global experimental situation introduced by any
given random phenomenon, with all the material objects and all the actions it involves,
determines a specific corresponding numerical law giving the distribution of the proba-
bilities of the elementary events involved.

The current author has for many years held that this interpretation is both deep and
important (Mugur Schächter 1992c; Mugur Schächter 2002b; Mugur Schächter 2006).
However, it does not provide any pragmatic guidance for the effective construction of
the factual probability law asserted to apply to the experimental situation. It is obvious
that if this is what we require, Popper’s propensity interpretation, though it constitutes
a highly suggestive insight, is in need of some rigorous specifications.

We should first say that it has already become clear that it is not appropriate to
speak of ‘the’ probability law, in any absolute sense. But even if we translate this
concept into MRC terms so that we always speak of the probability law relative to
some epistemic referential, is it appropriate to assume in advance that such a relative
probability law does in fact ‘exist’ for any random phenomenon? Also, is it enough
to raise this question in such ontological terms, or do we need to consider it from the
start, and quite fundamentally, in purely methodological terms when our aim is just to
construct a corresponding probability law? And, furthermore, is it always possible to
connect this constructive aim to some individual global meta-form?

In thinking about these questions, our ‘probabilistic game’ with the painting P suggests
the following conjecture:

Any given factual ‘probabilistic situation’ can be connected in some way to a con-
structible ‘global form’ that re-expresses in a geometrised way, with an integrated
simultaneous structure, the progressively revealed semantic content of the observ-
able statistical manifestations of the situation, thereby enabling us to identify by
counting a finite set of rational numbers constituting a factual probability law
that is valid in that particular probabilistic situation.

In the following, we will begin by assuming this conjecture and then develop a purely
methodological and constructive approach. We will leave ontological questions of exis-
tence or truth open to begin with, but if our approach succeeds, we shall have transformed
our initial conjecture into a proof by construction.

The following points will guide the development:

— We will begin by assuming that any random phenomenon, in consequence of the
stabilities involved in the ‘procedure’ Π, even though these are only relative to a set of
macroscopic parameters, nevertheless entails the constructibility of a corresponding
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relative global form that, if available, will allow us to specify, in finite terms, the
applicable probability law for the random phenomenon.

— For conceptual consistency with the approach we took in Section 4, we shall work
systematically within the framework of MRC, so the global form and the resulting
probability law will have to be specified in MRC relative terms.

— According to Kolmogorov’s probabilistic syntax, any probability law is tied to a prob-
ability space [U, τ, p(τ)]. Since our aim is to assign a domain of effective factual ap-
plicability to Kolmogorov’s syntax, we shall have to show how this syntax can be
connected to our construction of factual probability laws, which will then ensure that
we have produced an interpretation of the formal concept of a probability measure.

5.2. The MRC concepts of a random phenomenon and a ‘probabilistic situation’

5.2.1. The MRC definition of a random phenomenon†

Definition 5.1 (random phenomenon). Consider an epistemic referential (G,V )

where:

— G is a factual generating operation that can be repeated ‘identically’ (with respect
to some given set of parameters) and for which each realisation is methodologi-
cally assumed to introduce the ‘same’ entity-to-be-described œG (see point (1) in
Section 3.5.2).
(In many cases, an MRC analysis leads us to define G as simply the identically
repeated choice of the material initial conditions and the operations required to carry
out the ‘experiment’.)

— V is, in general, a union of aspect-views

V ≡
⋃
g

Vg , g = 1, 2, . . .m,

with m a finite integer. This is a factual operational view that acts upon œG and
generates the complete action leading to a qualification of œG through aspect-values
of the aspect-views Vg ∈ V (see point (3) in Section 3.5.2; point (4a) is also assumed).

The random phenomenon corresponding to the epistemic referential (G,V ) consists of the
pair (Π, U), where Π ≡ [G.V ], considered globally, constitutes the ‘identically’ repeatable
procedure (the ‘experiment’) and U denotes the universe of outcomes of a large number
of repetitions of Π ≡ [G.V ].

5.2.2. The MRC descriptional status of a random phenomenon
By construction, a random phenomenon is certainly some type of MRC relative descrip-
tion, but what type exactly? For clarity, we will give a very detailed and explicit answer
to this question.

According to MRC, any relative description D/G,œG, V/ realised with an epistemic

† See Mugur Schächter (2002; 2006, pages 193–202) for full details.
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referential (G,V ) involves a large number of repetitions of the sequence [G.V ] (see
point (6) in Section 3.5.2). Then:

— If the procedure Π ≡ [G.V ] is repeated N times and we get the same collection† of gk-
values for the aspect-views Vg in V for each of the N repetitions, then D/G,œG, V/
is an ‘N -individual ’ description (see point (6a) in Section 3.5.2).

— Otherwise:

– If some (N,N ′)-stability manifests itself, it is a statistical description in the sense
of MRC.

– Otherwise, if no such stability is observed, the epistemic referential (G,V ) is
discarded a posteriori, and there is no relative description corresponding to the
pair (G,V ).

In this case, the entity-to-be-described œG under consideration, although it exists
with respect to V (in the sense of point (4a) in Section 3.5.2), appears, a posteriori,
to be unsuitable for qualification using V (the resulting qualifications are ‘too
variable’ to justify any labelling).

Among these possibilities, agreement with the usual understanding of the concept of a
random phenomenon requires us to assume that the corresponding epistemic referential
(G,V ) produces a statistical description D/G,œG, V/ (see point (6b) in Section 3.5.2).
When the sequence Π ≡ [G.V ] is repeated N times, where N is a large number, it
produces a set of mutually distinct outcomes, which constitute the universe U . Since
everything in MRC is finite by construction, the universe U is a finite universe.

We will now consider the outcomes in U , which we will assume are physical entities.
So, in accordance with the frame principle (see point (5) in Section 3.5.2), the view
V should involve at least one aspect G that is not a space–time aspect and at least
one space–time-frame view V (ET ) or purely space-frame view V (E). In the case of
a random phenomenon, we only require a space-frame view V (E)‡. In general, this
space-frame view will involve several space aspects (the three-dimensional ‘position’,
parameters defining an orientation, and so on). So the view involved in the procedure
Π ≡ [G.V ] has the structure

V =
⋃
g

Vg ∪ V (E), g = 1, 2, . . .m,

with m ≥ 1. Note that this view is not chosen so that it exhausts all the aspects g
and all the space-frame aspects that are ‘naturally’ observable on an outcome of the
experiment Π (with some ‘naturally’ perceptible interval of values for each given aspect).
Indeed, this view generally does not involve all the aspects that are naturally observable

† Note that we deliberately avoid the use of the word ‘set’ here to emphasise the fact that the gk-values
do not form a simple set of elements that are just assumed to exist, but are relative descriptions
resulting from definite interactions between ‘reality’, whose nature cannot be directly perceived, and
a defined active view V.

‡ A stable random phenomenon usually divides up the time dimension into temporal extensions for
which no ordering is required since only counting will be performed. Because of this, and because we
are assuming stability, the time dimension is not active in the usual sense.
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on an outcome of the experiment Π. In particular, the spatial qualifications are almost
systematically ignored. In this sense, the relative descriptions realised for the epistemic
referential (G,V ) are just labelling descriptions†.

Putting this briefly, the definition of any possible single outcome of a realisation of
Π ≡ [G.V ] will consist of a description that only makes use of a smaller collection of
aspect-views

[{gk(g)}, g = 1, 2, . . .m, k(g) = 1, 2, . . . w(g)]

(see point (3) in Section 3.5.2) selected from amongst all the observable qualifications
available within the epistemic referential (G,V ).

In order to simplify the notation, we will now associate a unique global index r with
each of the possible collections of aspect-values associated with one particular outcome,
as defined above. We write r = 1, 2, . . . ρ, where ρ denotes the cardinal of the set of these
global values (the number of mutually distinct combinations of values k(g) of the aspects
G in V that have been selected to define the outcomes in U). We will write Dr to denote
the particular outcome of this kind tied to a given value of the index r, and we will write
Vr to denote the view that contains the selected aspects‡.

So, finally, we can say:

In MRC, the concept of the random phenomenon (Π, U) amounts to the general
concept of a ‘statistical description’ D/G,œG,Vr/ in the sense of point (6) in
Section 3.5.2, that is, it is a relative description that can be represented by§

D/G,œG,Vr/ ≡ [(Π, U)]

≡ [{[G.Vr ]n, {Dr}} , n = 1, 2, . . . N, r = 1, 2, . . . ρ]

where the number of labels N is the number of successive repetitions of the pro-

† In the case of a microstate, the aspect-views Vg in V will not, in general, all be mutually compatible
(they cannot be realised simultaneously on a single replica of the microstate), so, in general, a ‘single’
full realisation of Π ≡ [G.V ] will consist of a union of distinct and mutually incompatible sequences
[G.Vg]. However, we are working here under classical conditions, so, in accordance with the classical
theory of probabilities, all the aspect-views will be mutually compatible, so all the effects of the
realisation of a single sequence [G.V ] will be obtained simultaneously.

‡ Since any description D/G,œG, V/ in the sense of MRC involves a large number of outcomes N , a
single outcome ‘Dr’ is not itself a ‘description of œG’ in the sense of MRC. Nevertheless, it is a relative
qualification of the entity-to-be-described œG, which can be regarded as a sort of limiting relative
description corresponding to the limiting case N = 1. In this sense, the letter D in the symbol Dr is
justified.

§ The expression shows explicitly that MRC incorporates the fact, which was revealed in the study of
infra-quantum mechanics (Mugur Schächter 2011; 2013), that any strictly basic, primary, scientific
knowledge emerges with an inherently statistical character, notwithstanding the fact that this knowl-
edge is generated in a way that produces observable results with maximal stability through repetitions
of the same sequence of operations [G.V ]. This, in turn, underlines the fact that MRC is a method
for generating consensual knowledge. In particular, MRC is not concerned with the ‘natural’ ways of
describing a phenomenon, since ‘natural’ statistics that are free of any stability constraints play no
part. Such statistics can be represented within MRC as a priori pairings (G,V ), where the entity-to-
be-described generated by G exists relatively to V . However, these descriptions will be eliminated a
posteriori because they do not produce descriptional results with any stability.
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cedure Π, which is large but finite, and we have used the definitions

Π ≡ [G.Vr ]

U ≡ {Dr}

where r = 1, 2, . . . ρ.

The descriptionsDr, like all MRC descriptions, can only include finite features. However,
in the case of a factual random phenomenon, we will also make the following explicit
assumption:

Every description Dr, as well as the whole universe U of these descriptions, is
confined within a definite space domain.

5.2.3. ‘Random phenomenon’: a conceptual artefact
So, in MRC, a random phenomenon is assumed, by construction, to be endowed with
some definite stability entailed by a repeatable procedure Π ≡ [G.Vr ] involving a stable
epistemic referential, and so on. Even though this may only be a conventionally limited
‘partial’ (N,N ′)-stability, it is, nonetheless, a sort of stability. It is clear that factual
statistical situations endowed with this sort of stability do not pre-exist naturally. The
naturally occurring situations that are standardly called ‘statistical’ do not require any
‘identical’ repeatability of some definite procedure Π, so they do not involve any explicitly
defined stable content. They are not organised in advance to ensure predictability, not
even some local (and generally short lived) domain of predictability. They are just pieces
of information, though they are often gathered precisely with the aim of achieving some
predictability at a later time.

Hence, a random phenomenon appears to be a conceptual/operational artefact that
is deliberately conceived and created to extract, from the mass of natural fluctuations
surrounding us, a sample, subject to local constraints, that exhibits some predictability,
which, although leaving some uncertainty, is more stable than the phenomena usually
described as being ‘naturally statistical’. However, it is also less precise than an ‘indi-
vidual’ relative description in the sense of MRC (see point (6a) in Section 3.5.2), or, a
fortiori, a ‘deterministic’ description in the classical sense.

There may be some temptation to think that factual random phenomena may also
occur naturally, but a little reflection should make it clear that it is impossible to un-
ambiguously identify a random phenomenon in nature. This is even true in the case
of cosmological regularities, where humans can discern not only (N,N ′)-statistical de-
scriptions in the sense of MRC but also ‘individual’ N -descriptions, since, if we consider
a sufficiently long period, any statements about stability assigned to phenomena would
be invalid because they cannot be controlled artificially (Henri Poincaré developed this
idea of the non-permanence of natural physical laws). In the mathematical discipline
of ‘statistics’, there is no fundamental or systematic distinction between the natural
variation in the measurement of observed outcomes and the variation connected with
a random phenomenon. However, MRC is, by construction, a methodological represen-
tation of verifiable ‘scientific’ assertions, and this means we must distinguish between
stable and unstable statistics.
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5.2.4. ‘Probabilistic situation’.
A game of chance consists of a random phenomenon with a deliberately constructed
probability law, and thus an a priori known probability law. This is why the theory of
‘probabilities’ was based on the study of games of chance, and from there, the concept
of probability spread into the field of scientific research, and then into the fields of engi-
neering and manufacturing, where, again, the probability laws tend to be pre-established.
However, note that:

Kolmogorov’s aporia vanishes when the probability law is known by construction,
since in that case the numbers p(ei) in (2) on Page 8 do not need to be defined
frequentially. Hence, the aim of the law of weak numbers is then only to show
that, in the long run, the known factual probability law does arise observably,
with near certainty.

However, the probability laws used in scientific research, and even in engineering, are
just assumed to be involved as a consequence of the deliberately created stabilities, and
are never actually known in advance. This means they have to be identified, so the aporia
will occur.

There is also much confusion of various sorts about the factual probability laws them-
selves†.

These subtleties call for a more explicit classification of the ‘factual situations’ that
can be involved in the concept of a random phenomenon. We will conclude Section 5.2
with the following definition.

Definition 5.2 (probabilistic situation). The factual situation generated by the re-
alisation of a random phenomenon will be called a probabilistic situation.

And since a random phenomenon is a conceptual/operational artefact, a probabilistic
situation in the sense just defined is also a conceptual/operational artefact: a probabilistic
situation never exists naturally; it is always a result of design and realisation.

We believe that this is a non-trivial conclusion.

† In the course of a private exchange, Professor Jean-Marie Fessler, the ‘Advisor to the President’ of the
MGEN (the mutual organisation providing social and health insurance for all public-sector workers
in France), drew my attention to ‘the “unreasonable” proliferation of assertions of the existence of
Gaussian distributions in the statistics connected with health issues’ (Fessler 2009). He thinks that
these assertions are due to a confusion between the variation due to errors in the numerical values
obtained through measurements of some quantity performed on some event in the universe of possible
outcomes, and the distribution of the probabilities of those events (which, in general, are not numbers).

And in the extreme case of ‘primordial’ random phenomena, such as the ‘transferred descriptions’ in
the sense of Section 3.3.3, which are connected with microstates and studied in quantum mechanics,
it may turn out that the factual probability laws, which we now just assume always ‘exist’, simply
cannot be constructed, in general, within fundamental quantum mechanics: it may be that in order
to construct these probability laws systematically, we will need to make explicit use of a mutually
accepted model of a microstate, which is very likely to be some improved version of the de Broglie–
Böhm model.
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5.3. Constructive principles

In this section, we shall show how we can construct knowledge of the factual probability
law involved in any given random phenomenon.

5.3.1. The appropriate connection between factual probabilistic data and Kolmogorov’s
syntax
Consider a random phenomenon

(Π, U) ≡ {[G.Vr ]n, {Dr}} , n = 1, 2, . . . N, r = 1, 2, . . . ρ.

In Kolmogorov’s approach, the probability space [U, τ, p(τ)] tied to this random phe-
nomenon is founded on the universe U generated by the Π, which is identified with the
universe of ‘elementary’ events (cf. Section 2.1). However, this is not relevant to our
present aim. In order to specify how we can construct the factual probability law for
(Π, U), we will need to find some other way of making the connection between the factual
data produced by (Π, U) and Kolmogorov’s syntactic concept of a probability space, as
we will now explain.

In the example of the probabilistic game with the painting P , the universe of labelling
elementary-event-descriptions

U ≡ Dj, j = 1, 2, . . . q,

consisted of a set of q mutually distinct types of piece (pieces with the same approximate
colour), with q � 100. These had been extracted from the initial set of 100 distinct
‘local’ relative descriptions

D/G(σ), σ, V (El) ∪Vcφ

comprising the pieces of P by ‘simplifying’ these initial local descriptions to give the
universe

U ≡ {D/G(σ), σ,Vac/}
≡ {Dj}, j = 1, 2, . . . q.

(6)

In this way, any perceptible connection to the description

D/GP , P, V (El) ∪Vcφ/

of the complete painting P has been effaced from the elements of U ; these elements have
been perceptually cut off from P by the ‘simplifications’ applied to the global view. It
is because of this cut that we could not use the elements of the simplified universe (6)
as a jigsaw. It is also the reason we could not specify the factual numerical probability
distribution

{pF (Dj)}, j = 1, 2, . . . q,

on U for the probabilistic game using these elements.
However, in that particular case, the theorem of large numbers, together with knowl-

edge of the complete painting P , enabled us to identify the numerical factual probability
distribution. This was because each labelling elementary event description Dj had re-
mained materially immersed in (though perceptually cut off from) an already available
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and previously perceived more complex ‘local’ relative description

D/G(σ), σ, V (El) ∪Vcφ/

(note that the generating operation G(σ) is the same, and only the aspect-view applied
to it has been changed) that was itself a material fragment of the known description

D/GP , V (El) ∪Vcφ/

of the complete painting P . This very particular circumstance compensated for the cut:
namely, it enabled us to refer the ‘simplified’ descriptions in U ≡ {Dj} to the more
complex local relative descriptions

D/G(σ), σ, V (El) ∪Vcφ/

for the jigsaw of P , and then to count the occurrences of each given Dj in the description

D/GP , P, V (El) ∪Vcφ/

of the complete picture P . So it was our knowledge of the integral whole P and the
reference structure entailed by this knowledge that enabled us to specify the factual
probability distribution

{pF (Dj)} ≡ {nP (j)/nPT }, j = 1, 2 . . . q,

through a comparison with the law of large numbers. However, real life is rarely as
co-operative as this, so, in general, the data provided by the universe

U ≡ {Dr}, r = 1, 2, . . . ρ,

of (more or less) conventionally determined label-descriptions of the outcomes of a ran-
dom phenomenon Π ≡ [G.Vr ], as defined in Section 5.2.2, cannot guide us towards the
construction of the corresponding factual probability law.

In general, however, the syntax of a given domain of physical facts should help us in
solving problems about that domain. So, could some connection between Π ≡ [G.Vr ]

and a corresponding abstract Kolmogorov probability space be useful in constructing the
corresponding factual probability law?

In Kolmogorov’s formalism, the probability space associated with a random phe-
nomenon (Π, U) is based directly on the universe U of outcomes to which we have
assigned the role of elementary events. But in the case of the probability game with
the painting P , a connection of this sort would have been entirely useless without any
knowledge of P , that is, if the only information we had was the label-descriptions

{Dj}, j = 1, 2, . . . q.

Indeed, as we will observe in Section 5.3.2, in a probability space founded on U ≡
{Dj}, both Laplace’s principle and MRC would have required us to assume an a priori
uniform probability distribution on U ≡ {Dj}, which would have initiated a non-effective
and indefinite alternation between a priori and a posteriori considerations. However,
the probability law on an algebra constructed on U (and thus concerned with event-
descriptions with qualifications less specific than those from U) is not the problem we had
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to solve, since such an algebra is not the universe produced by the random phenomenon
under consideration: our aim in the case of the probability game with the picture P was
to specify the probability law on precisely the set of events

{Dj}, j = 1, 2 . . . q,

introduced by the random phenomenon (Π, U), with

U ≡ {Dj}, j = 1, 2 . . . q.

Now, this would have led us to locate the set

{Dj}, j = 1, 2 . . . q,

in the algebra from the space associated with this random phenomenon, and to base the
space upon the initial set

{D/G(σ, σ, V (El) ∪Vcφ/}
of ‘local’ descriptions, which is more complex than the descriptions Dj, and thus offers
a reference for counting how many initial local descriptions

D/G(σ), σ, V (El) ∪Vcφ/

‘realise’ any given description Dj. Hence, an appropriate procedure would be:

(1) Assign to the members of the set

U c ≡ {D/G(σ), σ, V (El) ∪Vcφ/}

the role of elementary events and use the index ‘c’ to indicate that the descriptions
in this universe are more ‘complex’, relative to the descriptions in the universe

U ≡ {Dj}, j = 1, 2, . . . q,

generated by the random phenomenon in the probabilistic game with the picture P .
(2) Then construct on U c an algebra that can contain the descriptions in the set

U ≡ {Dj}, j = 1, 2, . . . q.

For instance, the total algebra τ cT on U c certainly contains U ≡ {Dj} since it contains,
by definition, all the events that can be constructed from the elementary events in U c.
However, the algebra based on the classification of the descriptions in

U c ≡ {D/G(σ), σ, V (El) ∪Vcφ/}

according to the values j of the simplified view Vac† (which we will denote by τ c(j)) also

† In Kolmogorov’s classical representation, the syntactic elements used to accommodate specific factual
elementary events, or events, do not have a structure that is definite and detailed enough for us to
define an algebra based on a classification of the elementary events.
By contrast, MRC does. Indeed, since MRC says that any knowledge that is communicable without
restriction is a description, an elementary event, or an event, has to be specified as a description.
Now, a relative description is referred to a triad (G,œG, V ), and any individual aspect-view Vg in V
introduces two sorts of index (formal specifications): one indicating a semantic dimension g; and a
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satisfies this condition. Hence, in both of the algebras τ cT and τ c(j), any description Dj
for the random phenomenon (Π, U),

U ≡ {Dj}, j = 1, 2 . . . q,

would have reappeared as an event-description that is ‘realised’ by a complete set of
elementary-event-descriptions

D/G(σ), σ, V (El) ∪Vcφ/

in U c. Furthermore, since the probability measure in a Kolmogorov probability space
is defined on the algebra on the space, and not on the universe of elementary events, a
space where the role of the universe of elementary events is assigned to U c instead of
U would have been more coherent with our aim of specifying the factual distribution of
probabilities on U†. These remarks suggest that, in general terms:

Given a given random phenomenon (Π, U),

U ≡ {Dr}, r = 1, 2, . . . ρ,

involving an unknown probability distribution, in order to specify this distribution,
it might be useful to introduce an abstract Kolmogorov space denoted by

(Π, U) [U c, τ cT , pF (τ cT )]

where U is contained in τ cT (and the sign  does not have any standard mathe-
matical or logical meaning).

In this discussion, we have reached this conclusion simply on the basis of an example,
but it can be given quite general foundations within MRC, where it can be proved that
information about the structure of the factual probability law on the universe U cannot
be obtained within the epistemic referential (G,Vr) where U is itself represented, so
reference must be made outside it‡.

second index, k, involving a value index of g denoted by (gk) (or (gk(g)). (Note that we cannot
just use the set notation ei here without severely restricting what we can express by including the
descriptions of the elementary events, since there is no specific syntactic place for them in the flat set
notation ei.)
Similar considerations concerning the denotation e for the events in the algebra τ show that this
notation does not offer a formal location allowing us to express any ‘logical’ classificatory character
for this algebra – see Mugur Schächter (2002b; 2006). Indeed, it is this fact that has hindered the
unification of the classical theory of probabilities and classical logic.
More generally, in applications of the classical theory of probabilities, the impoverished set-theoretical
notation has obstructed the expression of the observable features involved. Formal languages, just
like natural ones, can have different degrees of expressivity. As illustrated by the example with the
painting P , using MRC to move from a set-theoretical notation to the relative descriptional notation
provides an invaluable increase in expressivity, which allows us to see features and criteria that can
guide us towards a whole class of conclusions that were previously hidden from us.

† Notice how MRC highlights the well-known but often ignored relativity of the ‘elementary’ character
of an event (in the probabilistic sense): whether a probabilistic outcome is elementary or not is ‘only’
determined by mutual reference within a corresponding probability space.

‡ See the Appendix for a formal statement and proof.
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The substitution of

(Π, U) [U c, τ cT , pF (τ cT )]

for the usual

(Π, U) [U, τ(U), pF (τ(U))]

could well have consequences for many probabilistic investigations.

5.3.2. Laplace’s principle versus MRC
We shall now examine under what conditions the introduction of a universe U c of de-
scriptions that are more complex than those in the universe

U ≡ {Dr}, r = 1, 2, . . . ρ

generated by a given random phenomenon (Π, U) could be useful in specifying the factual
probability law for U .

We will begin by observing that if we just assumed that the probability of an event
Dr from τ(r) is proportional to the number of mutually distinct elementary events of the
‘complexified’ universe U c, the required probability law on

U ≡ {Dr}, r = 1, 2, . . . ρ,

would follow trivially. But this assumption would be equivalent to assuming that the
distribution of probabilities on the universe U c is always uniform. Indeed this assumption
would precisely entail a factual distribution of probabilities of the form (5) on Page 50
because of the general formal requirement

P (A ∪B) ≤ p(A) + p(B),

where there is equality if and only if A and B are mutually ‘independent’ (cf. footnote †

on Page 6).
However, we need to ask: why should we postulate a uniform factual distribution of

probabilities on the universe of elementary events U c in the general case?
This question draws attention to Laplace’s well-known classical principle, which re-

quires the a priori assignment of a uniform probability distribution on the universe U of
outcomes generated by any random phenomenon. For Laplace, however, such an a priori
assignment was just an initial bet that is expected, in general, to be invalidated by a
posteriori measurements of the relative frequencies recorded for the elementary outcomes
in U . So Laplace’s principle induces a back and forth alternation between a priori and
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a posteriori considerations involving the non-effective law of large numbers†‡, and thus
must be avoided.

So Laplace’s principle§ does not help us identify the form of a true, though always rela-
tive, factual probability distribution on the universe of elementary events in a probability
space. So, finally, we can say:

A probability space

[U c, τ cT , pF (τ cT )]

based on a ‘complexified’ universe U c might offer a useful medium of reference
for constructing the unknown factual probability law for a random phenomenon
(Π, U) with

U ≡ {Dr}, r = 1, 2, . . . ρ.

However, this is true if and only if the factual distribution of probabilities on the
reference universe U c (not an a priori postulated law) is ‘truly’ uniform¶.

Now this is possible only if an empirically true, a factually established, ‘satisfactory’
degree of uniformity of the probability law on U c is ensured by construction, and thus
through factual data concerning the outcomes Drc in the complexified universe U c: as
with any syntax, the probabilistic syntax can work in a pragmatically useful way, but only
if it is fuelled with factual data that has a nature and organisation that fits conveniently
into the syntax.

This gives even more support for the notion that a ‘probabilistic situation’ is a con-
ceptual artefact subject to pragmatic aims.

5.3.3. Conclusions for the constructibility of a generalisation of the cut-up picture games
So we have now established that in order to identify, in an effective way, a factually true
numerical distribution of probabilities on a universe of outcomes induced by a given fac-
tual random phenomenon, we must rely entirely on data that are produced and controlled
factually.

We must now investigate what such data could be.

† However, many authors ignore the non-effective a priori/a posteriori alternation required by a rig-
orous use of the Laplace’s principle. Instead, they just make a definitive a priori assumption of a
uniform probability distribution of the relevant universe of elementary events, either on the basis of
considerations of symmetry (as in Boltzmann’s statistical theory of gases and, presumably, in many
quantum-mechanical investigations where symmetries are invoked), or without any explicit justifi-
cation. We stress that the fact that in an abstract probability space [U, τX , p(τX)], the abstract
probability measure p(τX) is defined directly on the algebra of events τX , and not on the universe of
elementary events U (cf. Section 2.1), indicates that Kolmogorov considered that the distribution of
probabilities on U is always to be decided on the basis of factual data external to the probabilistic
syntax. This is consistent with what we have called Kolmogorov’s aporia.

‡ The proofs of the two laws of large numbers (by Kintchine and others) did not exist at the time of
Laplace.

§ Similar reasoning applies to the well-known principle due to Jaynes.
¶ Tarski said ‘the snow is white’ is true if and only if the snow is white. Here we say ‘the factual
probability distribution on U is uniform’ is true if and only if the factual probability distribution on
U is uniform.
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In the case of the games with the painting P , effectiveness was entailed by the possibil-
ity of counting both elementary events and events inside any replica of the finite closed
whole denoted by P . The semantic attractions along the borders of the ‘complex’ and
‘local’ descriptions

D/G(σ), σ, V (El) ∪Vcφ/

were essential in carrying out such counting when starting from the fragments of the
picture P because:

— They enabled us to build the finite closed whole P .
— They enabled us to determine when we had completed a replica of P . In this way

we were able to avoid the ever-increasing number N of recorded outcomes required
by the theorem of large numbers, but instead had a sequence of sets of elements of
equal cardinal nPT , which correspond to mutually separated replicas of the completed
puzzle of P . Though these replicas emerged together in a mixed way, each replica
could always be distinguished from the others and, as soon as it was finished, it became
completely separate and was sufficient for us to determine the ratios nP (j)/nPT
within it† that determined the required probability distribution.

Because the painting P already existed and was known in the case of the painting
games, when we played the probabilistic game with the label-descriptions

{Dj}, j = 1, 2 . . . q,

we knew that the probability law on the more ‘complex’ universe U c for the ‘local’
elementary-event-descriptions

{D/G(σ, σ, V (El) ∪Vcφ/}

was truly uniform by construction. However, in the general case, this is not guaranteed
in advance, and we cannot assume it will always happen spontaneously.

In conclusion, the discussion in Section 5.3 suggests that a generalisation of the prob-
abilisitic picture game must introduce a definite procedure that:

— is based on the connection

(Π, U) [U c, τ cT , pF (τ cT )];

— enables us to build, using knowledge of the random phenomenon alone, an indefinite
number of replicas of a defined and demarcated ‘whole’ ;

— enables us to estimate when the internal content of one such replica has been com-
pleted ;

— enables us to ensure that the number of contributions, within the above-mentioned
whole, made by each of the elementary events making up the ‘whole’ have a factu-
ally uniform distribution (that is, the distribution is not just unspecified or a priori
assumed to be uniform).

† Note that the ratios here are not the ‘relative frequencies’ mentioned in the law of large numbers,
but, as in the painting games, ratios comparing the number of contributions of a given ‘element’ to
the total number of components making up the ‘whole’ structure.
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5.4. Construction of the factual probability law tied to a given random phenomenon

5.4.1. Outline
In this section, we will lay out some guidelines for the development of our general proce-
dure.

Consider an epistemic referential

(G,Vr), r = 1, 2, . . . ρ,

inside which a random phenomenon (Π, U) with U ≡ {Dr} is described, where r is a
global label-index and each value of r consists of some set of definite observable values
of aspect-views Vg ∈ Vr . Quite generally, r does not exhaust† the directly observable
aspects on the outcome denoted by Dr (for instance, the space aspects will be system-
atically ignored); a fortiori, aspects hidden from immediate observation (such as atomic
and chemical structures) are rarely considered. So, the descriptions Dr are always poorer
than other possible descriptions. Moreover, when the descriptions Dr ∈ U are explicitly
introduced purely as label -descriptions, they are cut off, by construction, from any pos-
sible integrated meta-form tied to (Π, U), so they certainly cannot provide any hints for
how to construct a representation of such a meta-form. In order to obtain such hints, we
will need to expand or ‘complexify’ each label-description Dr ∈ U from the definition of
a random phenomenon (Π, U) with

U ≡ {Dr}, r = 1, 2, . . . ρ,

to get a set of ‘convenient’ relative descriptions that are more complex than the label -
description Dr. This means we need a complexifying view V c ⊃ Vr and a corresponding
complexified representation space that includes the representation space of Vr .

We also need to know what the word ‘convenient’ means. In the present context, it
means precisely: such that each description Dr ∈ U is extended into a local form of
space-and-gk-values that reaches the borders of that local description‡ so that they are
sensitive to semantic attractions/repulsions with respect to other local forms developed
from descriptions of other events Dr ∈ U . This amounts to us requiring that the view
Vr involved in the label-descriptions is enriched in such a way that we can use the
resulting complexified descriptions to make an abstract sort of jigsaw puzzle within the
complexified representation space V c.

Now, according to MRC, this is always possible in the classical domain:

— Any event Dr ∈ U involves a physical entity. So the space–time-frame principle (see
point (5) in Section 3.5.2) means we can introduce space specifications that identify
the volume of ‘physical’ space containing that physical entity. This already enables us

† According to MRC, ‘exhaust’ is a forbidden false absolute since ‘all’ is a false absolute, and it is a
huge false absolute, though a very common one.

‡ By the definition of a random phenomenon in the classical sense, the event-descriptions Dr are
localised in space, and thus have ‘borders’. In other words, we have an equivalent of the local form

D/G(σ), σ, V (El) ∪Vcφ/

in the probabilistic game with the painting P .
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to considerably enrich the initial label-description of any event Dr ∈ U , but it also
allows us to specify ‘physical’ borders for the label-descriptions Dr.

— There are, in general, very many (or even a virtually unlimited number of) aspect-
views Vg that ‘exist’ (in the sense of point (4) in Section 3.5.2) with respect to the
entity involved in a label-description Dr ∈ U , and this considerably increases the
possibilities for enriching the initial label-description Dr.

— Apart from the limits arising from the requirements of mutual existence (see point
(4) in Section 3.5.2), MRC imposes no limits on the number of aspect-values gk(g)

that can be introduced within a given interval of the semantic axis assigned to an
aspect G. So, in general, the density of an axis can be greatly increased, if desired.

— According to MRC, inside the representation space of the view that complexifies the
label-descriptions Dr ∈ U , each complexified description constitutes a discrete local
points-form of space and gk aspect-values (see point (7) in Section 3.5.2). Neverthe-
less, if the density of the relevant aspect-values is sufficiently large, border characteris-
tics may emerge from this local points-form, notwithstanding its discreteness, that are
sensitive to semantic attractions/repulsions with respect to the border characteristics
of other local points-forms.

For these reasons, within the causal/deterministic classical domain:

An assertion that the label-descriptions Dr ∈ U cannot always be transformed
through complexification into a structure that allows us to use them as a sort of
abstract jigsaw puzzle would amount to a denial of the principle of causality†.

In this way, using trial and error, we will be able to identify‡ an individual integrated
relative points-form tied to

{Dr}, r = 1, 2, . . . ρ.

Of course, in any given case, the details of the complexification procedure will have to
be developed specifically for that case using the relevant available scientific knowledge
and the factual data that can be established. But this is true for any technological
construction process§¶.

† This radical statement is made here in the weak sense of everyday logic and it may not be amenable
to a formal proof – this idea deserves further attention.

‡ The observable semantic attractions/repulsions may not emerge when the random phenomenon under
consideration is involved in a game of chance (think of a dice game). However, we are not interested in
such cases here since the factual probability distribution of the outcomes is then known by construc-
tion. Also, the weak law of large numbers is free from circularity in such cases, and the non-effective
character of the frequential definition of the factual probability law is not a problem since the factual
law is known in advance. Hence, it seems safe to assert that it is very likely that the law of weak
numbers has only been established for games of chance.

§ This approach is often applied, more or less explicitly, in many important procedures involving the
integration of components, such as in anthropological reconstructions, scanning techniques, meteorol-
ogy and the transmission of television programmes – the novelty here lies in the association with the
concept of probability.

¶ In the case of microstate descriptions, which are basic transferred descriptions in the sense of Sec-
tion 3.3 and point (6e) in Section 3.5.2, the classical view is invalid because there is no worked out
model for the emergence of the ‘transferred’ outcomes for which a primordial basic description is
made, and, in general, the transferred outcomes themselves are just observable marks produced by
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5.4.2. Notation

5.4.2.1. General notation. In this section we shall introduce some general notation we
will use in the following rigorous development.

Consider the epistemic referential (G,V c) where the generator G is the same as in
(G,Vr) and V c ⊃ Vr is a complexified view that contains the initial view Vr and intro-
duces supplementary aspects g and can also introduce supplementary values for each of
the aspects brought into play. Let

U c ≡ {Drc}, rc = 1, 2, . . . ρc,

be the universe of all the mutually distinct complexifications of the elementary-event-
descriptions

{Dr} ≡ U, r = 1, 2, . . . ρ ,

that could, in principle, emerge relative to the view V c, where rc = 1, 2, . . . ρc, is a
new complexified index, each value of which refers globally to one of the ρc possible
mutually distinct structures of space–time-gk-values in V c. By construction, ρc is much
larger than ρ, and one value of the global index rc points to a complete points-form of
space–time-gk-values (without specifying it explicitly).

The set U c defined above is not a factual datum, it is only an a priori, abstract,
combinatorial, theoretical universe, in the following sense:

We do not know in advance which complexified descriptions, from amongst all the
complexified descriptions Drc ∈ U c that can, in principle, be constructed with
the help of V c, will be factually realised when the experiment Π is repeated a
very large number of times and the outcomes are examined using the complexified
view V c.

Note that our use here of the words ‘all’ and ‘each’ does not introduce false absolutes
since they just refer to the maximal content given by all the a priori possibilities assigned,
by construction, to the particular well-defined reference universe U c, and to which they
remain relative. This content will be reduced a posteriori by the factually observed
outcomes, but we are obliged to begin in this all-inclusive way.

Consider now, as described in Section 5.4.1, the probability space

[U c, τ cT , pF (τ cT )]

defined on the complexified universe U c, where τ cT is the total algebra on U c. According
to our discussion in Section 5.3.1, the label-descriptions Dr ∈ U for the random phe-
nomenon (Π, U), with U ≡ {Dr}, r = 1, 2, . . . ρ, are now located in the algebra τ cT . And

measurements, which, though they are located in some space-time domain, are, nevertheless, void of
any qualia (that is, of any gk-aspect-view values with g 6= E and g 6= T ). Furthermore, the pos-
tulate of causal determinism cannot be constructed within the level of conceptualisation containing
the transferred basic descriptions of microstates (Mugur Schächter 2011; 2013). We will return to
the consequences of this remarkable fact in Section 8. As we pointed out earlier, this is why we have
restricted consideration here to the classical domain.
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in that algebra, when compared with the complexified view V c, they appear as ‘simpli-
fied’ ‘event’ -descriptions (or ‘label’-descriptions) that have been reduced to qualifications
through the coarser label aspect-view Vr ⊂ V c only. So now, with respect to the new
complexified view V c, an outcome Dr ∈ U appears to be realisable through a complete
set {Drc(r)} of relative ‘elementary’-event-descriptions Drc(r) ∈ U c, where r is fixed
and rc(r) = 1, 2, . . . ρc(r).

However, this too is only an a priori, theoretical, oversized set of possibilities: since
we do not know beforehand which of the elements of U c will factually emerge when the
experiment Π is repeated, we cannot know which elements in the subset of elements of
U c that arise from a given value of r can factually emerge. However, we do know that:

Two outcomes inDrc(r) andDrc(r′) with index-values r 6= r′ are, by construction,
mutually exclusive as results of a single realisation of Π.

Note that U c and τ cT are just used as a medium for embedding the initial label-
descriptions Dr ∈ U for conceptual development and reference. Without any exterior
reference structure, the label-descriptions give an illusory appearance of being absolute,
which prevents any further cognitive development.

5.4.2.2. The representation space for V c. We will now explicitly construct the representa-
tion space for the complexified view V c. Since each elementary event Drc ∈ U c describes
a physical entity, according to the MRC frame principle (see point (5) in Section 3.5.2),
the complexified view V c necessarily includes a space–time-frame aspect-view V (ET ),
which can be endowed, in particular, with some definite length-aspect and a correspond-
ing ‘length unit’ (the smallest perceptible distance); but we are also free to introduce
other aspects such as angles.

By construction, the random phenomenon (Π, U) confines the set of all factually pos-
sible space-coordinates tied to the elementary outcomes Drc ∈ U c within some given
demarcated space domain (or zone) Z. Inside Z, the complexified elementary events
Drc ∈ U c can be as mutually distinguishable as we want because of the practically un-
limited precision that can be assigned to spatial qualifications through a virtually free
choice of units.

As required by point (7) in Section 3.5.2, all the semantic axes are endowed with
aspect-values, which may or may not be measurable. We assume that the order of the
aspect-values gk(g) (see Section 5.2.2 for the notation) on each semantic dimension g is
specified, even if it is only done arbitrarily.

5.4.2.3. The points-grid of V c’s representation space. The discrete sets of gk(g) values
carried by the semantic axes g mean that V c’s representation space defines a multi-
dimensional finite grid of multi-dimensional points γ(V c). The oversized character of the
complexified universe U c ensures that this grid γ(V c) can enclose the spatial zone Z with
a margin: here we assume there is a margin around Z.

By construction, the representation on γ(V c) of a given complexified description Drc ∈
U c consists of a local points-form, and a single value of the complexified index

rc = 1, 2, . . . ρc,
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points to one of these ρc possible points-forms in γ(V c)†.

5.4.3. Algorithm to identify factually the probability law associated with a random phe-
nomenon
Consider the representations on γ(V c) of the local points-forms labelled by the values of
the complexified index rc = 1, 2, . . . ρc.

We have shown that if we choose aspect-views g and space–time-gk-values appropri-
ately, the semantic border-characters of these local points-forms will display ‘semantic
attractions/repulsions’ that are sufficiently definite to allow us to make a sort of abstract
jigsaw puzzle on γ(V c). However, if the border-characteristics of the points-forms in the
grid γ(V c) do not allow us to make a jigsaw puzzle, then we must choose other supple-
mentary aspects g and/or space–time-gk-values (the aspects, units for the aspect-values
or just a qualitative density of the aspect-values, and so on). So, finally, through trial and
error, we will reach a position where we can make an abstract jigsaw puzzle on γ(V c).

In the following, we will assume that we have established the possibility of making an
abstract jigsaw puzzle on γ(V c), and will construct an algorithm based on this possibility.

This algorithm consists of two steps, which also both involve trial and error.

5.4.3.1. Step 1: semantic integration of replicas of a relative ‘points-form’ φ(Π, U) tied to
(Π, U). We can use as many replicas of the points-grid γ(V c) as we need, and will denote
each of them by γk(V c), where k is an integer from a finite index-set k = 1, 2, . . .K, with
cardinal K (note that this k is not the same as the index ‘k’ used in connection with a
value (gk) of an aspect g).

We begin by performing the experiment Π. Using the complexified view V c, the
first outcome Dr ∈ U is observable as a local complexified description Drc ∈ U c that,
inside τ cT , ‘realises’ that particular Dr ∈ U (in the sense defined in Section 2.1). By
construction, this complexified description Drc is unique among the mutually exclusive
ρc possible elements Drc in U c.

The ‘local points-form’ corresponding to the outcome Drc of the first realisation of the
experiment Π is also unique by construction. It is also bounded within any replica of the
points-grid γ(V c), and it can certainly be represented on the first replica of γ1(V c) of
γ(V c), since none of the replicas have been used yet.

We now repeat the experiment a number of times. Each new outcome Drc will be
represented:

(a) On the first replica γ1(V c) of the grid γ(V c) if the unique domain reserved there
for the new local points-form corresponding to this new outcome is still unoccupied.

In this case, the position on γ1(V c) where the new local points-form has to be
located will be identified through the semantic-attractions/repulsions of its border-
characteristics with respect to the border-characteristics of the other local points-

† Like the label-index r = 1, 2, . . . ρ, the index rc = 1, 2, . . . ρc is just a label-index, and it is only when
the local form appears displayed on the grid γ(V c) that the value of the index rc can point to it;
otherwise it remains hidden in (or folded into) the value of rc.
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forms already present on γ1(V c). This identification involves trial and error, and
sometimes waiting for new clues, exactly as in the jigsaw puzzle game.

(b) Otherwise, on the next (in k order) replica γk(V c) that we can find with a vacancy
in the reserved domain where the new outcome Drc can be placed.

Now, by construction, the grid γ(V c) encloses the domain Z of space where, by the
definition of the random phenomenon being studied, the factual outcomes Dr ∈ U can
appear. So, the grid γ(V c) can hold the representations of all the unique and mutually
exclusive outcomes Drc ∈ U c that are in principle (that is, on purely combinatorial
grounds) possible within the epistemic referential (G,V c). In consequence of this, the
postulated unknown complete ‘points-form’ φ(Π, U) is entirely contained (potentially)
within γ(V c), and within some confined boundary. The procedure defined by points (a)
and (b) above leads to the progressive and observable emergence of this boundary on the
first representation φ1(Π, U) of φ(Π, U), which is realised on the first replica γ1(V c) of
γ(V c).

Moreover, a series of other, increasingly incomplete, reproductions of the same unknown
points-form φ(Π, U) will emerge and become observable on subsequent replicas

γ2(V c), γ3(V c), . . . γk(V c), . . . γK(V c)

of the points-grid γ(V c). So, at any time, we shall be able to perceive a series of K
increasingly incomplete reproductions φK(Π, U) of the points-form φ(Π, U).

Sooner or later, but in a finite time (because everything in MRC is finite by construc-
tion), we will observe that the first representation φ1(Π, U) of φ(Π, U) appears to have
stopped evolving, while the number N of repetitions of the procedure Π continues to
grow, and continue to feed the growth of the points-forms labelled by k = 2, 3, . . .K.
In this way, we shall know that φ1(Π, U) almost certainly ‘completely’ materialises the
unknown form φ(Π, U) in an observable way.

At this point we will pause briefly to explain exactly and explicitly what we mean by
‘almost certainly completely’, and why we only say that ‘φ1(Π, U) of φ(Π, U) “appears”
to have stopped evolving’.

We employ these verbal hedges because nothing can absolutely exclude the possibility
that at some future time, as N increases, there will be an outcome Drc for which the
position (and the corresponding neighbourhood) on γ1(V c) is still free (in particular,
this may be on the boundary of φ1(Π, U)), and thus an entirely unexpected new element
will be added to the unknown points-form φ(Π, U). All our considerations are affected
by the possibility of this occurring.

However, all natural laws are affected by similar possibilities. And it is always possible
that there may be even more radical future modifications of φ(Π, U), in the same way as
for any ‘natural law’.

Probability distributions and natural laws are only local conceptual constructs, which
are only asserted as ‘certainties’ on the basis of an implicit pragmatic assumption of ‘sta-
ble conditions’, which are never valid everywhere and for all time (Mugur Schächter 2002c,
pages 291–303). A certain, definitive, absolutely stable factual truth can never be con-
structed conceptually. Only syntactic ‘truths’ can be absolutely stable, but they are
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just the conclusions of deductions and are thus, in fact, merely expressions of the logical
internal consistency of the syntactic system and not observational factual truths†. More-
over, the sort of stability of a syntactic ‘truth’ in this sense, that is, a formal internal
consistency (a misused word, in such a context), even though it can last indefinitely,
nevertheless is as inherently relative as a factual truth is: it is relative to the necessarily
restrictive set of axioms and definitions that define the syntax in which the formal truth
has been established. And the factual truth of these varies in the long run, and in a way
that cannot be avoided. The basic, primary data lie beyond the realm of pure reason,
and are inherently statistical.

5.4.3.2. Step 2: controlling the uniformity of the distribution of the elements Drc of U c.
Suppose we have continued to increase the number N of realisations of the experiment Π,
and have now produced a large number, say K, of points-forms that are all identical to
φ1(Π, U) – these will be followed by a series of increasingly incomplete emerging points-
forms of representations of outcomesDrc connected through semantic border continuities.
We will now denote any of these K mutually identical points-forms by

∼K φ(Π, U)

where ‘∼K ’ is to be read as saying ‘almost certainly, on the basis of K mutually iden-
tical points-forms’. We will also call the concept denoted by ∼K φ(Π, U), ‘the’ K-
representation of the unknown points-form φ(Π, U) (note the definite article).

Suppose now that while N is being increased still further, and despite the ‘almost
certainty’ of completeness expressed above, we observe, very unexpectedly, a new point-
event Drc for which the location in γ1(V c) is still unoccupied, even though the content
of γ1(V c) has remained unchanged for a very long sequence of repetitions of Π, thus
contradicting the assumption represented by ∼K φ(Π, U). How should we react?

Our first remarks will continue the discussion of Step 1 of the procedure. This new
observation reveals that the new point-event Drc ∈ U c, despite being unexpected, ap-
pears to be factually possible in the conditions produced by the experiment Π. In other
words, its factual probability, whatever it may be, is non-zero. But saying that the new
Drc has a non-zero probability is equivalent to saying that if we greatly increase the
number of repetitions N of the experiment Π, then Drc will almost certainly reappear
from time to time, so that, over a sufficiently long period, it will progressively occupy
its place in all K previously constructed identical replicas of φ(Π, U) used as the basis
for the concept ‘φK(Π, U)’. This amounts to a retroactive modification of the concept
‘φK(Π, U)’. But we prepared for this possibility by specifying the relativity to K of the
concept represented by ∼K φ(Π, U). On the basis of this reasoning, any event Drc that
finds its place free in φ1(Π, U), even after a very long period of apparent saturation, can
be immediately reproduced on all other registered replicas of φ(Π, U). This mutability

† We define an ‘observational truth’ to be an observed datum that is confirmed by comparison with
natural circumstances, and not just with the internal consistency requirements of a purely formal
construct, which requires its own definition tied to formal internal consistency (consider Gödel’s
theorem).
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of the representations of φ(Π, U) is entailed by the fact that, unlike the particular case
of the probabilistic game with the painting P , in the general case treated here, not only
is the factual distribution of probabilities tied to the presupposed meta-form φ(Π, U)

unknown at the start, but the meta-form itself is also unknown.

Now that we have completed the discussion of Step 1, we will move on to consider
the specific objective of Step 2, namely, the possibility of ensuring the uniformity of the
numerical distribution of the elements Drc ∈ U c of the universe U c of elementary events,
which we have used as the basis for the Kolmogorov probability space

[U c, τ cT , pF (τ cT )]

associated with the random phenomenon under investigation.
The fact that the new point-event Drc ∈ U c was ‘unexpected’ draws attention to the

fact, already mentioned in Section 5.3.2, that a generalisation of the approach taken in
Section 4 is only conceivable if, on the basis of factual data, the elementary events of U c

(that is, the ‘elements’ thought of as being mutually distinguished within the complete
form φ(Π, U)) can be assumed to be themselves uniformly distributed within that form.
In the case of the probability game with the painting P , this distribution was known by
construction to be uniform, and this was a necessary condition for asserting the factual
probability given by (5) on Page 50, since it enabled us to know the total number NPT
of puzzle pieces in P . But in the general case we are now considering, we know nothing
about the distribution of the complexified descriptions Drc in U c. And if a point-event
Drc that still has an empty location in φ1(Π, U) emerges after a long sequence

φ1(Π, U) ≡ φ2(Π, U) ≡ . . . ≡ φK(Π, U)

of representations of φ(Π, U) has already been completed, then this point-event is almost
certainly less frequent in U c than the other local complexified descriptions Drc ∈ U c

making up the K preceding representations of φ(Π, U) and used as the basis for the
concept ∼K φ(Π, U).

Now, the general relative and constructive features of the framework we are using
suggest that the factual procedure for dealing with this problem of true uniformity is as
follows:

In the above circumstances, where we observe a new ‘unexpected’ outcome af-
ter a long period, we shall interpret it as a manifestation of the possibility that
the structure assigned to the complexifying view V c that led us to the considered
universe U c is not yet fully pertinent to our aim†.

So we shall need to correct for this through the tentative use of a modified or enriched
complexifying view V c. In this way (by trial and error, and with respect to a number
K that, according to whatever requirements we have chosen for the degree of stability,
and thus the degree of certainty, is deemed to be satisfactory in the search for a perti-
nent complexifying view V c, and relatively to this number K), we will finally reach an

† Another possibility is that there is some long-term ‘fluctuation’ in the order of the outcomes, but, for
simplicity, we will not consider this possibility here.



M. Mugur-Schächter 74

acceptable assumption of ‘K-uniformity’ of the distribution of the elements Drc in U c,
in terms of which the complete unknown form φ(Π, U) is conceived†. Since this process
does not involve any infinite operations, it is neither non-effective nor arbitrary – it is
just an empirical procedure.

There is no more ‘correct’ or more ‘exact’ way to deal with this problem. When we
reach the limits of the syntax we are using and are faced with factuality, we have to
import semantic material, which inherently contains fluctuations and uncertainty.

When we try to construct a concept of factual probability, any requirement of
strict deductibility everywhere, and, in particular, a requirement for a smooth
stable progression in the features of the sequences of factual results, would simply
be a contradiction.

We will call the procedure outlined above the K-relative algorithm of semantic inte-
gration of the form φ(Π, U) that we have assumed to be associated with the random
phenomenon being studied.

5.4.4. The relative factual K-probability law to be associated with a random phenomenon
We can now use the same reasoning as in Sections 4.1.5 and 4.2 for the probabilistic game
with the painting P to try to identify the factual numerical probability distribution
{pF (U)} to be asserted on the universe of events.

In the same way as we did for the completed picture P , we can now count the total
number of complexified outcomes Drc that have been factually realised in φK(Π, U). We
will denote this number by ncφ(K)T . We can also count, for any given description Dr ∈ U
viewed as an event in the algebra of events τ cT , the number, say ncφ(K)T (r), of ‘realisations’
of that Dr inside φK(Π, U): namely, a specific complexified factually realised outcome
in the set of all the factual outcomes corresponding to a fixed value r. We will denote
this set by

{Drcφ(K)(r)},
with r fixed and

rcφ(K)(r) = 1, 2, . . . ρcφ(K)(r)

an index in an index-set of cardinal ρcφ(K)(r). Note that

ρcφ(K)(r) 6= ρc(r).

Unlike the cardinal ρc(r) of the set {Drc(r)}, with r fixed and

rc(r) = 1, 2, . . . ρc(r),

in the universe U c on which we founded the Kolmogorov space [U c, τ cT , pF (τ cT )]

associated with the random phenomenon (Π, U), the cardinal ρcφ(K)(r) does not

† This form itself will never be known with ‘definitive accuracy and absolute certainty’. Indeed, ac-
cording to MRC, the concept of definitively true and certain knowledge of a physical entity is a false
absolute (Mugur Schächter 2002a; Mugur Schächter 2002b; Mugur Schächter 2006). However, remem-
ber that it is only the (strictly non-qualified) existence of a form φK(Π, U) that is methodologically
assumed in the present approach.
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count purely theoretical combinatorial possibilities, but counts elementary-event-
descriptions that are factually realised within the meta-form φK(Π, U) and en-
dowed there with a factually uniform numerical distribution.

To stress this important fact, we will write

ρcφ(K)(r) ≡F nφ(K)T (r),

where the sign ‘≡F ’ is to be read as saying ‘factually identical to’.
By construction, a complexified description Drc that is an element of the set

{Drcφ(K)(r)}

cannot also be an element of a set

{Drcφ(K)(r
′)}

where r′ 6= r. Furthermore, we have

nφ(K)T =
∑
r

nφ(K)(r)∑
r

nφ(K)T (r)/nφ(K)T = 1

where r = 1, 2, 3, . . . , ρ. Therefore, using reasoning that is strictly analogous to that
developed in Section 4.2 for the probabilistic game with the picture P , but now quite
generally based, we can assert that, on the basis of a probability game with the elements
Drcφ(K) of the finite and confined representation φK(Π, U) of the unknown ‘points-form’
φ(Π, U), the factual numerical definition of the probability of an event Dr is the rational
number

pF (r,K) ≡ nφ(K)(r)/nφ(K)T .

So we will call the set, relative to K, of rational and factually identified numbers with
normalisation 1,

{pF (r,K)} ≡ {nφ(K)(r)/nφ(K)T }, r = 1, 2, . . . s, (7)

the factual K-representation of the distribution of probabilities associated with the random
phenomenon (Π, U)†.

5.4.5. Conclusions for Section 5
The procedure that led to the definition in (7) was developed entirely within the MRC
framework. This procedure is effective, non-circular and strictly factual in its specific
content : all components of (7) that are specific to the random phenomenon (Π, U) under
investigation, though expressed in terms of a preconstructed general representational
framework, are drawn exclusively from factually observed data produced by (Π, U). Any
necessity for a possibly unending confrontation between an a priori assertion of a uniform

† Computer simulations might enable us to rapidly organise the whole substratum required for the
calculations in (7).
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distribution of the elements of U c and an a posteriori non-effective ‘verification’ of this
assertion has been removed. We have generated a unique finite sequence of outcomes
of the experiment Π ≡ [G.V ], which is controlled by the ‘natural’ reasoning inherent in
everyday thought.

We will call this general procedure the algorithm of factual determination of the prob-
ability law to be tied to a given random phenomenon, and we will denote it by the symbol

A [{pF (r,K)} ↔ (Π, U)] .

Note that the form of this symbol shows explicitly that this algorithm includes within it
the K-relative algorithm of semantic integration of the unknown form φ(Π, U).

According to MRC, any communicable and consensual knowledge is a description. So
it is precisely a points-form of space–time and aspect-values endowed with some invari-
ance (see points (5), (6) and (11) in Section 3.5.2). Moreover, any relative description,
whether it be ‘individual’ or ‘statistical’ in the sense of MRC, involves, by definition,
many reproductions of the sequence [G.V ] of the two epistemic operations G and V in
the corresponding epistemic referential (G,V ). These conceptual uniformities in MRC
tend to obscure the clear outlines of the concept of an ‘individual’ description.

However, the way we have constructed the algorithm A [{pF (r,K)} ↔ (Π, U)] raises a
number of issues, which we will discuss in the following section.

5.4.5.1. On intelligibility. When a description is individual (in other words, immediately
global, like a description of an apple perceived on a table), the corresponding form of
space–time aspect-values is usually immediately ‘understood’ (so, for example, it can be
immediately inserted in ‘causal chains’). Whereas, in the case of a description tied to a
natural statistical situation or a random phenomenon (Π, U) in the sense of MRC, the
global physical situation involved generally evades any direct and complete perception
because it involves features that are partly hidden or too small, too large or too complex
to be immediately grasped by a human mind and composed into ‘one’ organised structure.
Only fragments of this complete structure are directly perceived and apprehended. And
for these fragments, certain relative connecting features (semantic continuities, distances,
angles, relative durations† and so on) are hidden, that is, they are filtered out from direct
perception. The features that can be directly observed on these fragments are massively
cut off from any conceivable global source structure. What we have denoted by Dr ∈ U
and called a ‘label-description’ is precisely such a fragment carrying features that appear
to be cut off from any known or immediately guessed global structure. These cuts destroy
intelligibility. They even destroy the capacity to merely imagine the possibility of the
existence of a related factual ‘whole’ that might ensure intelligibility.

This is because the fragments denoted Dr ∈ U belong to a level of conceptuali-
sation that is different from the level where the global form φ(Π, U) is postulated
to exist.

† For simplicity, we have generally restricted the discussion to spatial features, but everything can be
straightforwardly extended to space–time features.
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Indeed, generally speaking, we are mentally immersed exclusively in the level of con-
ceptualisation where we perceive the fragments from which we construct statistical/prob-
abilistic descriptions. And on that level, we are blind to any relative representation of a
complete φ(Π, U) tied to the random phenomenon (Π, U)†.

The relative outcome frequencies of the observed events Dr ∈ U , through their ob-
servable tendency towards a certain degree of stability when the number of repetitions
N of the procedure Π increases, construct, but only a bit at a time through a sequence
of disjointed random effects, a fundamentally cryptic and purely numerical representa-
tion of the unknown physical whole that can be thought of as the source of the events
Dr ∈ U . These relative frequencies cannot carry the meta-qualia tied to non-perceptible
meta-contours: they do not exist (in the sense of point (4) in Section 3.5.2) with respect
to a view where the relational aspects between the various events Dr ∈ U are not de-
fined. They can only generate a sort of coded, random and asymptotic ‘reading’, which
can only convey fragmented signals that suggest the relevance of a meta-view sensitive to
relational aspects. Any tendency in these signals to show regularities may then induce a
feeble and fluctuating idea of the possibility of a unique source that somehow acts on the
evolution of the observed relative frequencies. However, even with this idea, and even
a posteriori, once the ‘reading’ process has been completed (which it must be at some
time since, like any human action, it is finite), if the collection of relative frequencies
provided by the process is reconsidered for all the events Dr at the same time, the values
of the relative frequencies being now known to have reached a certain degree of stability
relative to the parameter K, the factual probability distribution

{pF (r,K)}, r = 1, 2, . . . ρ,

defined by use of the recorded relative frequencies will still only yield a meaningless
numerical expression.

It is at this point that we see the remarkable role played by the ‘complexifications’
Drc(r) ∈ U c constructed for the directly perceived event-descriptions Dr ∈ U . These
complexifications (through embedding, reference and local semantic-attractions/repul-
sions at their borders) are what enabled us to climb to a meta-level of conceptualisation
where we could gain access to a representation φK(Π, U) of the postulated global form
φ(Π, U).

But in order to benefit from this embedding and reference, the usual connection, for
which we will use the symbol

(Π, U) [U, τ, pF (τ)],

has had to be replaced by the connection

(Π, U) [U c, τ cT , pF (τ cT )]

† We have evolved on the level of our direct perceptibility like ants, for whom the tiniest clods of earth
obliterate the view, and for whom the tiniest crevice acts as an abyss. We cannot perceive, and do
not imagine, the meta-contours of large entities that would become clear from a more comprehensive
point of view. In order to become aware of such meta-contours, we need to take off in an appropriate
conceptual vehicle that can bring us up to a level where these contours can be perceived and defined.
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defined in Section 5.3.1. And in order to make use of the local semantic-attractions/repul-
sions at the borders, we have had to add definite factual data to the basic universe U c

and the algebra τ cT .
Of course, the various conventions and descriptional relativities involved in the con-

struction of any meta-form φK(Π, U) mean that such a meta-form is only one element of
a large class of various possible representations of φ(Π, U): the choice of the meta-view
V c is never unique. Moreover, any element in this class still only offers a coded, though
now integrated, representation of the postulated unknown form φ(Π, U). And, again of
course, the qualia implied by a representation φK(Π, U) of the unknown form φ(Π, U)

are only represented by symbols: in general, they too are not perceivable.
Nevertheless, it remains the case that when we combine

— the mutual individualisation of the various complexified outcomes Drc(r) ∈ U c of
any given Dr ∈ U ,

— the possibility of representing the semantic location of each of these complexified
outcomes, and, above all,

— the possibility of, finally, counting these outcomes inside a closed relative representa-
tion of a whole that contains a finite number of outcomes Drc(r),

we can specify, in a non-circular way, the relative factual probability law

{pF (r,K)}, r = 1, 2, . . . ρ,

tied to (Π, U), and, moreover, we can gain, through φ(Π, U), some global understanding of
the general concept of a factual probability law, and some clear unambiguous significance
that can be assigned to a conveniently selected meta-form φ(Π, U).

We are confident that over time the procedure in Section 5.4.3 will be simplified and
improved, and its current complexity is just a temporary flaw resulting from its novelty.

As for the factual ‘truth’ of the existence of the postulated unknown form φ(Π, U), we
can regard it as consisting of the fact that, while it generates intelligibility, its conceptual
and factual consequences can be ‘verified’ consensually. However, this is not a problem,
since factual truth is never more than consensual for the physical theories constructed
by humans; not even when what we qualify is directly observable, because even then,
it is relative to the language we use, which is itself consensual, and which in its turn is
relative to the biological processes through which we perceive and reason.

6. The weak law of large numbers versus the algorithm A [{pF (r,K)↔ (Π, U)]

In this section, we shall examine the relationship between the algorithm

A [{pF (r,K)↔ (Π, U)]

and the weak law of large numbers.

6.1. Mutual characterisation

We will begin by restating some characteristic features of the weak law of large numbers:

∀r. ∀(ε, δ).∃N0.∀N. (N ≥ N0)⇒ P [(|n(er)/N − p(er)|) ≤ ε] ≥ (1− δ). (8)
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In (8), the symbol p(er) presupposes:

(a) The existence of a numerically unspecified mathematical limit, denoted by p(er),
towards which the measured relative frequencies n(er)/N converge in consequence
of some assumed mathematical conditions, together with a ‘frequential definition’
of the abstract concept of the ‘probability of the event er’ that consists of precisely
that limit, for any fixed value of the index r.

(b) A characterisation (see the footnote on Page 6) of, exclusively, the well-known ab-
stract concept of a ‘probability measure’, which only requires general and global
conditions on the set of mathematical limits {p(er)}, r = 1, 2, . . . s†: however, the
elements of this set are left numerically unspecified, and thus completely lacking any
definite connection to any particular factual probabilistic situation.

Mutatis mutandis, the same holds for the abstract meta-probability P .
Points (a) and (b) reflect a non-effective point of view, which is located on a general

level of abstract conceptualisation that has been deliberately emptied of any individual
factual semantic content to ensure maximal generality so that it can act as a mathematical
vehicle for any factual probabilistic data.

Considered globally, (8) represents the syntactic evolution of the relationship between
the mathematical limit p(er), which is initially completely unspecified numerically, and
the relative frequency n(er)/N , as the integer N counting the number of completed
repetitions of the experiment Π under consideration tends towards infinity in uniform and
ordered steps of one unit. Each step progressively injects some (fluctuating and globally
uncertain) numerical content into the initially numerically unspecified sign p(er). This
uniform progression of N is assumed to extend over the whole abstract interval from
1 to ∞. It does not distinguish between a priori hypothetical factual assertions and a
posteriori factual findings; it just goes on towards ∞ in identical steps. The fluctuations
in the way the value of the ratio n(er)/N evolves are free of any semantic regulation.
The only control over fluctuations within the framework of (8) is expressed in purely
syntactic terms, and consists exclusively of the meta-probable restrictions imposed by
the pair of arbitrarily small real numbers (ε, δ).

We will now compare this with the algorithm A [{pF (r,K)} ↔ (Π, U)].

Our assumption postulating the existence of a global meta-form φ(Π, U) tied to any
given random phenomenon (Π, U) induced a peculiar sort of semantic K-quantification
into the evolution of the number of repetitions N of the experiment Π. From a purely
numerical point of view, the semantic integration sub-algorithm giving φK(Π, U) repre-
sentations of φ(Π, U) maintains the uniform, ordered and unlimited progression of the
integer N introduced by equation (8). However, this algorithm also takes into account
the semantic content of all the elementary complexified outcomes

Drc(r), rc = 1, 2, . . . ρ(r), r = 1, 2, . . . ρ,

and on the basis of these, it selects the place for each outcome Drc on the appropri-

† We speculate that the integrability conditions required for the laws of large numbers may be connected
with an intuitive perception of a meta-whole reflected in a probability measure.
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ate replica of the grid γ(V c), quite independently of when it appears in the sequence
of 1, 2, 3, . . . N repetitions of the experiment Π. In this way, through the semantically
based positioning of the outcomes, the sub-algorithm for identifying the φK(Π, U) rep-
resentations of φ(Π, U) organises, out of the steadily increasing sequence of repetitions
of the procedure Π, the perceptibility of ‘K-quanta’ of significance with respect to the
definability of the factual probabilities pF (r,K). Given our aim of determining such
significance, it focuses attention on the way the successive representations

φ1(Π, U), φ2(Π, U), φ3(Π, U), . . . φK(Π, U)

of φ(Π, U) emerge through a semantic treatment of the outcomes. This treatment, in
turn, punctuates the featureless flow of results from the uniformly increasing number
N of realisations of Π: specifically, N tends to be split progressively into a sequence of
mutually exclusive sets with identical cardinals nφ(K)T .

Even though, at any given time after we have achieved what we believe to be a set
of completed and stabilised K-representations of φ(Π, U), we cannot know with ‘abso-
lute certainty’ (which is a non-effective concept) that the set of elementary complexified
outcomes Drc will not acquire any new elements if N continues to be increased, the K
completed and thus far apparently stable, representations

φ1(Π, U), φ2(Π, U), φ3(Π, U), . . . φK(Π, U)

already mark a quantification of N that, retroactively, obscures the order in which the
outcomes Drc emerged†.

The semantically controlled positioning of the representation of each result Drc

produced by the uniform increase in the number N of repetitions of the procedure
Π, removes the need for a never-ending (a priori)/(a posteriori) dialog‡.

6.2. Compatibility between the weak law of large numbers and A [{pF (r,K)} ↔ (Π, U)],
and their unification

In this section we will not give any formal proofs but just an informal, though explicit,
account of the syntactic and semantic compatibility existing between the weak law of
large numbers, as given by (8), and the algorithm A [{pF (r,K)} ↔ (Π, U)] . On the basis
of this compatibility, we will combine them into a unified expression in mathematical
terms, which will be associated with the semantic/syntactic connection

(Π, U) [U c, τ cT , pF (τ cT )]

† Note added in proof: The contribution by Christopher Porter to this Special Issue of the Journal
describes some work of Kolmogorov in which, under some definite constraints, which are tied to a
different objective, certain finite sequences are selected a posteriori from an indefinitely long sequence
of signs. Given the similarities, it would be interesting to know whether there is some non-trivial
methodological connection between his procedure and ours.

‡ To date, the necessity, at least in principle, for such an endless dialog has not been removed. In
fact, the question has often just been ignored by simply assuming from the start that the elements
of the universe produced by the random phenomenon under consideration are uniformly distributed.
However, this does not resolve the problem, which remains in principle, and largely unaddressed.
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involved in A [{pF (r,K)↔ (Π, U)] .

This unified expression will provide a complete formalised global representation of the
essential syntactic and semantic features of the concept of probability we have proposed
in the current paper. The rather unusual operations in this section may be regarded
as just a fresh manifestation of the general constructive approach used throughout the
current paper.

The semantic features introduced by the algorithm A [{pF (r,K)↔ (Π, U)] , together
with the effects they create and the results they produce, will allow us to rewrite (8) in
a new form. To do this, we will begin by introducing some new notation:

er ≡ Dr ≡ r (9)

and

N ≡ Knφ(K)T +N ′,

n(r) ≡ Knφ(K)T (r) + n′(r)
(10)

In (10), the term Knφ(K)T represents, for a given integer K, the number of unit steps
(whatever their results) in N that contributed to the construction of K mutually iden-
tical representations φK(Π, U) of the postulated unknown whole form φ(Π, U). These
unit steps will have introduced Knφ(K)(r) complexified realisations Drc(r) of any given
particular event Dr ≡ r. The term N ′ is the number of other unit steps in N , which
will have contributed to the emergent, but incomplete, new representations of φ(Π, U).
These N ′ supplementary steps will have introduced some supplementary unknown global
number n′(r) of complexified elementary realisations Drc(r) of the same event Dr ≡ r

considered above. These supplementary N ′ unit steps are not yet endowed with the
semantic significance given by the definition (7) of a probability pF (r,K), which is only
valid for an already (nearly certainly) completed replica of the form φ(Π, U).

We will now also make the tentative assumption of a ‘nearly constant and exact equal-
ity’ between the two numbers p(er) and pF (r,K) when K is ‘sufficiently’ large. It is
assumed that in each specific case there will be some declared criteria (denoted by c)
defining the meaning of the term ‘sufficiently’ large – such criteria are similar to those
used to define the required ‘precision’ of measurements.

We can write this assumption in the form

p(er) ≈c pF (r,K), for sufficiently large K, (11)

where the sign ‘≈c’ is to be read as saying ‘equal in the sense of the criteria denoted
by c’.

The syntactic concept of probability in (8) has a non-effective and circular ‘frequential’
definition given (exclusively) by its numerical value in the form of the real numerical value
limit p(er). By contrast, (11) provides a factual definition, which is only relative, and
may not be strictly stable, but is, at any specific time, effective (finite) and non-circular,
and possesses a definite significance in the form of the ratio

nφ(K)(r)/nφ(K)T ,

which, inside any already completed representation φK(Π, U) of a ‘whole’ φ(Π, U) asso-
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ciated with the random phenomenon under investigation, refers to the counted number
nφ(K)(r) of outcomes Drc(r) and the counted total number nφ(K)T of outcomes Drc con-
tained in φK(Π, U) (note the clear distinction between the ratio nφ(K)(r)/nφ(K)T and
the relative frequencies n(r)/N appearing in (8)).

We would now like to substitute (11) into (8), but, at first sight, it is not obvious that
we can do this without introducing some numerical inconsistencies since, unlike p(er),
the number pF (r,K) is not an unknown but fixed limit, but has a known and definite
numerical value, which, in principle, might evolve. However, we can say:

— The only direct effect of substituting (11) into (8) is on the numerical value of the
absolute difference |n(er)/N − p(er)|.

— Moreover, the numerical difference between the absolute value |n(er)/N−p(er)| in (8)
and the absolute value ∣∣∣∣n(r)

N
− pF (r,K)

∣∣∣∣
we get by substituting (11) (and (9)) in (8) can always be absorbed in the condi-
tions specified on the left-hand side of formula (8) and the fact that, formally, (8)
only asserts two inequalities on the right-hand side of the implication (one of which,
moreover, involves a meta-probability).
Indeed, (8) is not an equation, and it is unaffected by any possible numerical discrep-
ancies arising from the substitution (11) because of the (ε and δ) approximations and
the (meta)-probabilistic character given by P , which allow it to support the a priori
possible fluctuations of what we have called ‘the almost certain completeness’ of the
representation φK(Π, U) of φ(Π, U). Therefore, it can equally support the possible
numerical fluctuations of the value of pF (r,K), as well as the existence, in general,
of fluctuations in the values of the numbers n′(r) and N ′ while K is increased.

Hence, we can now use (9)–(11) to rewrite the absolute difference |n(er)/N − p(er)|
appearing in (8) as:∣∣∣∣n(r)

N
− pF (r,K)

∣∣∣∣ =

∣∣∣∣Knφ(K)(r) + n′(r)

Knφ(K)T +N ′ −
nφ(K)(r)

nφ(K)T

∣∣∣∣ . (12)

This yields:

∀r. ∀(ε, δ).∀K.∃N0.∀(Knφ(K)T +N ′). ((Knφ(K)T +N ′) ≥ N0)⇒

P
(∣∣∣∣Knφ(K)(r) + n′(r)

Knφ(K)T +N ′ −
nφ(K)(r)

nφ(K)T

∣∣∣∣ ≤ ε) ≥ (1− δ).
(13)

Now, when the number K (and thus N by (10)), is increased indefinitely,∣∣∣∣Knφ(K)(r) + n′(r)

Knφ(K)T +N ′ −
nφ(K)(r)

nφ(K)T

∣∣∣∣
tends in probability towards zero†. This is because the numbers n′(r) and N ′ can be
considered to be constant in the mean, even though, in general, they do fluctuate when

† Note that, in principle, both of the terms in the absolute difference are now variable.
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K increases from some given value to the next value K+ 1. Indeed, by construction, the
general physical conditions expressed by the experiment Π ≡ [G.Vr ] remain invariant
with respect to any such increase in the value of K, so, as K increases, the numerator of
the term

Knφ(K)(r) + n′(r)

Knφ(K)T +N ′

tends towards Knφ(K)(r) and the denominator tends towards Knφ(K)T , so the ratio
tends towards

nφ(K)(r)

nφ(K)T
.

This means that the absolute difference appearing in the argument ofP in (13) tends to 0,
so the inequality with respect to ε is almost certainly fulfilled whenK becomes sufficiently
large. This also entails the almost certain fulfilment of the inequality involving δ.

Note that this does not mean that (13) is just a variant of the original form (8) since
(13) and (8) are quite essentially different from both logical and semantic points of view
because:

(a) The expression (13) is logically non-recursive in the sense that the definition (7) of
a factual probability

pF (r,K) = [nφ(K)(r)/nφ(K)T ]

makes no changes to the numerical values of the relative frequencies n(r)/N in (8),
or to the way they evolve†. A ‘semantic’ definition like (7) does not affect the
numerical values of the relative frequencies n(r)/N of the events involved. Moreover,
a definition like (7) can be constructed for any probability, and thus, in particular,
for the meta-probability P in (8) (for which the ‘events’ consist of the numerical
values progressively acquired by the absolute difference in (13) for each choice of a
set of values (r, (ε, δ),K)). This then means that:

The expression (13) no longer defines one probability p(er) through another
probability P . Indeed, the probabilities p(er) now have their own factual
numerical redefinition in the form of (11), viz.

p(er) ≈ pF (r,K),

and this is independent of the definition of P , and can be constructed inde-
pendently. This removes the circularity introduced by (8).

(b) Unlike (8), the form of (13) shows explicitly that any non-zero value of the absolute
difference involved arises exclusively from the semantically non-significant excess

† We have already stressed, and will repeat here, that the only effect of the translation of the relative
frequencies n(r)/N into the form

n(r)/N = [(Knφ(K)(r) + n′(r))/(Knφ(K)T +N ′)]

is to identify the semantic locations on the grid γ1(Vc) of the outcomes Drc of N already completed
successive repetitions of the experiment Π: there are no changes to the pure counting of the number
N of these repetitions or to their outcomes Drc.
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values (denoted by n′(r) and N ′, and introduced by a relative frequency n(r)/N)
with respect to the peaks of exact definability of the factual probability pF (r,K)

through the algorithm of semantic integration.
So:

It is only the ‘quanta of significance’ φ(K) that play a decisive role in an
effective mathematical definition of the semantic concept of factual probability.

(c) A factual probability law is defined by a set of rational numbers. However, a proba-
bility measure is conveniently represented by real numbers because its own descrip-
tional role is to express and formally control any conceivable factual probability
law.

We believe that the non-effective definition of a formal probability as a real numerical
(probable) limit of rational numbers can be preserved within the probabilistic syntax
without inducing any circularity in the various theorems of large numbers, since we can
now construct the factual concept of probability independently.

Finally, if the essence of the mathematical expression (13) is translated into standard
terminology, it just says:

WhenK is increased sufficiently, the relative frequency n(r)/N of the complexified
realisations Drc(r) of the event Dr ≡ r tends to become identical to the relative
factual probability pF (r,K) assigned to Dr ≡ r in (7) through the algorithm
A [{pF (r,K)} ↔ (Π, U)] .

And this shows that:

The central idea in the weak law of large numbers, viz. that the relative frequency
n(r)/N of outcomes of an event can be regarded as generating a numerical measure
of the factual value of the probability of that event, despite being non-effective, is,
nevertheless, fully compatible with the algorithm A [{pF (r,K)} ↔ (Π, U)] for the
identification of the factual probability law to be associated with a given random
phenomenon.

In short, when we remove the circularity and non-effectiveness that blight the weak
law of large numbers, this law can be regarded as a mathematical confirmation that the
postulated existence of an unknown ‘integral whole’ φK(Π, U) corresponding to any ran-
dom phenomenon fits coherently within a global concept of probability that is explicitly
worked out with respect to all relevant points of view: factual/conceptual/operational,
methodological and syntactic. Moreover, the numerical value of the individual syntac-
tic probability value p(er) involved in (8) can be factually materialised safely using the
algorithm A [{pF (r,K)} ↔ (Π, U)] in the way we did in (11).

7. General conclusions on Kolmogorov’s aporia

We can now conclude that in the definition of the factual concept of probability associated
with a given random phenomenon, we can still use the primitive, naive definition of the
concept of probability, in other words, ‘the number of favourable cases divided by the
total number of all possible cases’, but these two numbers must be counted inside some
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rigorously relativised MRC representation of a meta-whole associated with the random
phenomenon under investigation, where their definitions are no longer flawed by any
arbitrariness arising from a mass of vague and implicit assumptions.

Given our earlier discussion, this conclusion may come as a surprise.
In the current paper, we have explicitly reconstructed the naive definition with full

generality and rigour. This solves Kolmogorov’s aporia and provides us with a concept
of probability that is both effective and coherently worked out from all relevant points
of view, viz. factual/conceptual/operational, methodological and syntactic.

The result can be regarded as a pragmatic, and very strong, specification of Popper’s
propensity interpretation of probabilities.

In the future, the newly organised concept of probability elaborated here may well
produce new consequences, questions and solutions, as well as other yet to be discovered
features.

The current author has already established a major consequence of this concept,
namely, the definability of effective measures of the various sorts of relativised com-
plexities tied to the various descriptional roles associated with the method of relativised
conceptualisation: specifically, the complexity measures of any relative MRC description
and any MRC view, and even the complexity measure of any MRC object-to-be-qualified
relative to a given set of MRC-views (Mugur Schächter 2006). Since any communicable
knowledge is a description, and any description involves a generator of the entity-to-be-
described and a view, this list is exhaustive. Moreover, it does not ignore the semantic
features, but, on the contrary, incorporates them quite essentially. We will not pur-
sue this any further here, but in the next section we will give a very brief outline of a
surprising problem concerning quantum mechanics’ famous ‘essential probabilities’.

8. Quantum-mechanical ‘probabilities’

It is well known that so-called ‘quantum-mechanical probabilities’ go beyond both clas-
sical logic and the classical concept of probability. This was clearly established in
Mackey (1963), and the probability tree of the set of random phenomena correspond-
ing to the generation of a single microstate offers an explicit and detailed concep-
tual/operational understanding of Mackey’s mathematical discussion. Moreover, the fact
that the algorithmA [{pF (r,K)↔ (Π, U)] cannot be applied to quantum-mechanical ran-
dom phenomena produces a fundamental divide between classical probabilities and the
conceptualisation achieved within fundamental quantum mechanics.

Indeed, the results of measurements performed on a microstate almost always consist
exclusively of observable marks (point-like impacts on a sensitive medium, sounds, and
so on) that do not produce any qualia in the observer’s mind that carry any significance
tied to the microstate or the measured mechanical quantity, or, a fortiori, to the values
of this quantity derived from translations of the observable marks carried out using
conceptual/mathematical formulations based on the existing classical conceptualisation.
This all means that the aspect-views required for complexifications are absent.

Similarly, when we look carefully at the essence of the quantum theory of measurement,
it appears to offer no resources for coding the registered marks in terms of the eigenvalues
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of measured mechanical quantity other than the space–time location of the observed
marks, together with the conceptual/mathematical formulations mentioned above – see
Mugur Schächter (2011), Sections 3.3.2–3.3.5 and, especially, Mugur Schächter (2013).

Furthermore, fundamental quantum mechanics contains no explicit model of a mi-
crostate, and because of this profoundly non-classical situation:

Within quantum mechanics, the space–time locations of the observable marks
produced by measurements (being isolated, naked and with no significance that
can be directly connected to the microstate) cannot in any way be expanded into
more complex observable events.

Therefore, it is impossible to construct a reference structure that will allow us to
give a factual specification of a probability law that can be associated with the random
phenomena tied to a given microstate.

On the other hand, it is well known that according to the quantum-mechanical pos-
tulates, the quantum-mechanical probability law corresponding to any given case can be
calculated formally from the state vector of the microstate involved. Now, quantum me-
chanics’ first successes were for simple bound microstates and for free microstates that do
not encounter any non-Hamiltonian ‘obstacles’, and in these cases it was possible to write
down the state vector. However, in general, it is impossible to identify the state vector
for a particular microstate under investigation, although, despite this, the investigation
can generally be carried out in a purely empirical way. Indeed, in order to identify the
state-vector of a microstate†:

(1) The experimental situation must be a ‘Hamiltonian situation’.
(2) The relevant Hamiltonian operator must be defined.
(3) The corresponding time-independent Schrödinger equation must be solved to give

an infinite set of formally possible solutions.
(4) Finally, in order to extract from the set of possible solutions the one corresponding

to the case being considered, we have to specify the relevant boundary conditions
mathematically.

In practice, this procedure is impossible for anymicrostate that can actually be generated
and then studied through measurements.

The possibility of producing a microstate and performing measurements on it does not
entail the possibility of determining a corresponding state vector.

Furthermore, it does not allow us to apply the algorithm constructed in the current
paper for identifying a factual probability law.

Hence, it may even be the case that the famous ‘essential’ quantum-mechanical con-
cept of probability, which it is said always generates such precise and precisely verified

† For example, consider Schrödinger’s calculations in determining the state vector of the single electron
in an atom of hydrogen, which required a number of successive stages, mathematical tricks, ingenious
pieces of reasoning and appropriate approximations. And then imagine a slightly more complex case.
As another example, consider a free state of a microsystem that encounters some irregular obstacle,
and then try to define the Hamiltonian for it (assuming it is a Hamiltonian case; but what do you do
if it isn’t?).
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predictions, cannot even be constructed in an effective way inside quantum mechanics
itself.

However, the view very roughly outlined above is a personal one, and has only been
raised here to submit it for discussion in the physics community at large.

The opposite view, that the quantum-mechanical factual probability law correspond-
ing to any definite case can be derived inside the formalism of quantum mechanics,
has been upheld by various authors – see Destouches-Février (1946), Ballentine (1973),
Deutsch (1999) and Anandan (2002), and no doubt others as well.

However, the issue is far from settled, and I doubt whether those who have commented
on it were aware of Kolmogorov’s aporia, and of the fuzziness it reveals in the classical
concept of probability, which was itself the starting point for the quantum-mechanical
concept. Such commentaries all seem to assume that we know how to construct the
particular factual probability law involved in any probabilistic physical theory, but that
inside the quantum-mechanical formalism, it might also be possible to formulate a general
procedure for deriving the factual probability laws from the mathematical representation
of a microstate. I believe that this manifests an astonishing lack of awareness of the
fact that formal representational elements cannot be used as a pool of factual data that
have not first been independently obtained empirically and then translated into repre-
sentational formal elements using a convenient coding – this confusion is the result of a
misinterpretation of Gleason’s theorem (Gleason 1957).

In short, I believe that the hope that the quantum-mechanical probability laws can be
derived is completely opposed to the conceptual situation revealed in the current paper.
Indeed, given the results presented here, it may finally turn out that, purely on the basis
of uncontestable arguments of principle, the concept of probability is quite essentially a
classical concept that can only be effectively constructed inside the domain of classical
thinking where we work with models and a postulate of causal determinism (Mugur
Schächter 2006, pages 118–127).

If this is the case, the quantum-mechanical descriptions would have to be recognised
as being simply ‘primordially’ statistical transferred descriptions (see point (6b) in Sec-
tion 3.5.2). Of course, we could just assert the existence of an ideal mathematical limit,
and this assertion could, more or less, be checked as an observed tendency to converge,
but this would mean we were again subject to Kolmogorov’s aporia.

Nevertheless, nothing prevents us from thinking that the postulate of existence of a
global form φK(Π, U) may also remain valid for the random phenomena connected with
a microstate, but that this global form can only be represented on some higher level of
conceptualisation of the microstates, where, unlike the case for fundamental quantum
mechanics, a generic finite model of microstates is explicitly introduced (such as an im-
proved version of the de Broglie–Böhm model that is always contained within a definite
finite space domain). This would amount to believing that it will only be after we have de-
veloped some entirely satisfactory consensual interpretation of the primordial transferred
descriptions produced by fundamental quantum mechanics that we could justify applying
the concept of probability to the random phenomena related to the quantum-mechanical
descriptions of microstates. Such an interpretation would then provide us with a sort
of conceptual iceberg whose small probabilistic tip would only appear within our new
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interpretation of fundamental quantum mechanics, while the much larger statistical part
lying under the sea would be expressed through the purely transferred descriptions of
microstates offered by fundamental quantum mechanics.

9. General conclusions

The concepts of statistics and probability are currently in need of thorough reconstruction
if they are to cover, exhaustively and coherently, both the classical domain and modern
microphysics. The current paper represents a basic effort in this direction, but at the
same time has been written as an illustration of the way in which the general method
of relativised conceptualisation can be used to clarify concepts and problems, and then
construct solutions to the problems. Our overarching conclusion is that a general and
explicitly constructed method of relativised conceptualisation seems to be an unavoidable
requirement in the current phase of scientific thought.

Appendix A.

Consider a random phenomenon

(Π, U), U ≡ {Dr}, r = 1, 2, . . . ρ,

within an epistemic referential (G,Vr) where the descriptions Dr are maximally specified
with respect to all the aspect-views in the view Vr . Also consider the probability space

[U, τT (U), p(τT )]

based on the universe

U ≡ {Dr}, r = 1, 2, . . . ρ,

and where τT (U) is the total algebra on U , which, in particular, contains all the elemen-
tary events in U . Now consider the unknown factual numerical probability distribution
p(U) on the universe U of elementary events. By construction, this distribution is con-
tained in the probability law p(τT ) (which is assumed to exist) on the total algebra τT .

Proposition A.1. Nothing can be asserted about p(U) within the scope of possible
knowledge demarcated by the epistemic referential (G,Vr): not the uniform distribution

p(U) ≡ {p(Dr)}
≡ {1/ρ}, ρ times

(where ρ is the cardinal of the index set r = 1, 2, . . . ρ) or any other form.

Proof. By hypothesis, each description Dr in the universe

U ≡ {Dr}, r = 1, 2, . . . ρ,

is maximally qualified with respect to all the aspect-views in the view V working within
the epistemic referential (G,Vr). So, once the relative descriptions Dr have all been fully
worked out inside (G,Vr), all the qualifying powers of (G,Vr) will have been exhausted.
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Now suppose we want to qualify the resulting set of descriptions

{Dr}, r = 1, 2, . . . ρ,

using two new aspect-views for numerical qualifications leading to the specification of
the factual probability law on U :

(1) in terms of the set of the numerical values

{n(Dr)/N}, r = 1, 2, . . . ρ,

observed for the meta-aspect n(Dr)/N of relative frequency of an outcome of Dr ∈ U
in a sequence of N repetitions of the experiment Π ≡ [G.Vr ];

(2) in terms of some meta-meta way of estimating the set of numerical values

{p(r, (N,N ′)}, r = 1, 2, . . . ρ,

towards which, in N ′ repetitions of a sequence of N repetitions of the experiment
[G.Vr ], the set of relative frequencies {n(Dr)/N} shows a tendency to convergence,
which is assumed to ‘exist’.

In order to determine such meta-estimations and meta-meta-estimations, we have to
introduce, respectively:

(1) An epistemic referential (G′, V ′) where:

— G′ 6= G introduces as [entity-to-be-described] œG′ (which is different from œG)
the whole universe U ≡ {Dr} of the descriptions Dr previously achieved inside
the initial epistemic referential (G,Vr), considered globally;

— V ′ 6= Vr consists of a single aspect-view, which is a ‘statistical’ aspect-view of
relative frequency that qualifies, using numerical values, the elements of the set
{n(Dr)/N} (generically written n(Dr)/N ′), but leaves unchanged the semantic
content of the descriptions Dr in U that were determined inside (G,Vr).

(2) An epistemic referential (G′′, V ′′) where:

— G′′ introduces as [entity-to-be-described] œG′′ (which is different from both œG
and œG′) the set of all the numerical qualifications of the relative frequencies in
the set {n(Dr)/N}, considered globally;

— the view V ′′ (which is different from V ′ and Vr) qualifying each element of this
new set through estimates involving the limiting number towards which it is
assumed to converge, while leaving unchanged the semantic content of the de-
scriptions previously achieved inside (G,Vr) and (G′, V ′).

Now, according to the principle of separation PS (see point (9) in Section 3.5.2), each of
the three successive descriptions specified above has to be carried out exclusively within
its own epistemic referential and in a way that is strictly separated from the descriptional
processes performed within other epistemic referentials. Hence, no indication of any sort
can be found inside the initial epistemic referential (G,Vr) concerning the form of a
factually true probability law

{p(Dr)}, r = 1, 2, . . . ρ,
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on

U ≡ {Dr}, r = 1, 2, . . . ρ.

Acknowledgements

I would like to express my considerable gratitude to Professor Giuseppe Longo, the
Editor-in-Chief of Mathematical Structures in Computer Science, for offering me the
opportunity to organise this special issue of the journal, through which I have been able
to put forward, and submit to debate by experts, some ideas that are not often perceived,
but might be fertile, and to which I am attached.

References

Anandan, J. (2002) Causality, Symmetries and Quantum Mechanics. http://arxiv.org/abs/
quant-ph/0112020.

Bailly, F. and Longo, G. (2007) Randomness and determination in the interplay between the
continuum and the discrete. Mathematical Structures in Computer Science 17 289–307.

Ballentine, L. E. (1973) Can the statistical postulate of quantum theory be derived? Foundations
of Physics 3 229–240.

Born, M. (1935) Atomic Physics, third edition, Blackie and Son.
Destouches-Février, P. (1946) Signification profonde du principe de décomposition spectrale.

Comptes Rendus de l’Académie des Sciences 222 866–68.
Deutsch, D. (1999) Quantum Theory of Probability and Decisions. Proceedings of the Royal

Society A455 3129–3197.
Fessler, J-M. (2009) Private communication.
Gleason, A.M. (1957) Measures on the Closed Subspaces of a Hilbert Space. Journal of Math-

ematics and Mechanics 6 885–93.
Khinchin, A. I. (1957) Mathematical Foundations of Information Theory, Dover Publications.
Kolmogorov, A.N. (1933) Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse der Math-

ematik. (English translation: Kolmogorov, A.N. (1950) Foundations of the Theory of Proba-
bilities, Chelsea Publishing Company.)

Kolmogorov, A.N. (1963) On tables of random numbers. Sankhyā Series A 176–183. (Reprinted
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